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AUTS2 Governs Cerebellar Development,
Purkinje Cell Maturation, Motor Function
and Social Communication

Kunihiko Yamashiro,1,2 Kei Hori,1,* Esther S.K. Lai,3,4 Ryo Aoki,1,2 Kazumi Shimaoka,1 Nariko Arimura,1

Saki F. Egusa,1 Asami Sakamoto,1 Manabu Abe,5 Kenji Sakimura,5 Takaki Watanabe,4 Naofumi Uesaka,4,6

Masanobu Kano,4 and Mikio Hoshino1,2,7,*

SUMMARY

Autism susceptibility candidate 2 (AUTS2), a risk gene for autism spectrum disor-
ders (ASDs), is implicated in telencephalon development. Because AUTS2 is also
expressed in the cerebellum where defects have been linked to ASDs, we inves-
tigated AUTS2 functions in the cerebellum. AUTS2 is specifically localized in Pur-
kinje cells (PCs) and Golgi cells during postnatal development. Auts2 conditional
knockout (cKO) mice exhibited smaller and deformed cerebella containing
immature-shaped PCs with reduced expression of Cacna1a. Auts2 cKO and
knock-down experiments implicated AUTS2 participation in elimination and
translocation of climbing fiber synapses and restriction of parallel fiber synapse
numbers. Auts2 cKO mice exhibited behavioral impairments in motor learning
and vocal communications. Because Cacna1a is known to regulate synapse devel-
opment in PCs, it suggests that AUTS2 is required for PC maturation to elicit
normal development of PC synapses and thus the impairment of AUTS2 may
cause cerebellar dysfunction related to psychiatric illnesses such as ASDs.

INTRODUCTION

The cerebellum is a well-defined brain region known to control motor coordination and function. The

cerebellar cortex consists of a uniform three-layered structure: the molecular layer (ML), Purkinje cell

layer (PCL), and granule cell layer (GCL) (Ito, 2006). Because its highly stereotyped cytoarchitecture is

composed of fewer types of neuronal cells compared with other brain regions, the cerebellum has

been used as a good model system to study neurogenesis and cell morphogenesis as well as circuit as-

sembly (Sillitoe and Joyner, 2007). Among neurons in the cerebellar cortex, Purkinje cells (PCs) are the

sole output neurons that extend a long axon to deep cerebellar nuclei (DCN) neurons (White and Sillitoe,

2013). In mouse brains, PCs are generated at the ventricular zone of the cerebellar primordia during em-

bryonic (E) 11–13 days and then migrate and differentiate until birth (Altman and Bayer, 1978; Yuasa

et al., 1991). During the first three weeks of postnatal development, PCs form apical stem dendrites

with extremely elaborated branches. Each PC receives excitatory presynaptic inputs from a single climb-

ing fiber (CF) originating from a neuron in the inferior olivary nucleus (ION) and simultaneously accepts

inputs from the multiple parallel fibers (PFs) projecting from granule cells (GCs). Accumulating evidence

demonstrates that the cerebellum is increasingly appreciated as a potential regulator for high-order

brain functions. Functional magnetic resonance imaging (fMRI) studies on human subjects have revealed

that the activation of the cerebellum is associated with social cognition and emotional processing

(Schmahmann and Caplan, 2006; Van Overwalle et al., 2014). Accordingly, isolated cerebellar injury or

cerebellar lesions have been linked to various types of cognitive and social impairments (Limperopoulos

et al., 2007; Schmahmann and Sherman, 1998). Postmortem studies in individuals with autism spectrum

disorders (ASDs) displayed cerebellar PC loss (Amaral et al., 2008; Bauman and Kemper, 2005). In addi-

tion, animal models of various neurological disorders revealed that a reduction in the number or dysfunc-

tion of PCs leads to abnormal social behaviors (Tsai et al., 2012). However, despite the significance of

proper development and function of PCs for socio-cognitive processes in the cerebellum, the patholog-

ical mechanisms underlying how impairments of development or function of PCs contribute to neurolog-

ical disorders remain to be clarified.
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Autism susceptibility candidate 2 (AUTS2) (also termed ‘‘activator of transcription and developmental regu-

lator’’) has been identified in human genetic studies as a risk gene for numerous types of psychiatric ill-

nesses, including ASDs, intellectual disabilities (IDs), and schizophrenia (Hori and Hoshino, 2017; Oksen-

berg and Ahituv, 2013). In addition, the genomic structural variants in the AUTS2 locus have been

associated with multiple types of neurological disorders such as attention deficit hyperactivity disorder

(ADHD) and dyslexia (Elia et al., 2010; Girirajan et al., 2011). Moreover, AUTS2 has been implicated in other

neuropathological conditions such as epilepsy, motor delay, and language delay (Mefford et al., 2010; Sen-

gun et al., 2016; Talkowski et al., 2012). Auts2 is a long and complex gene, and it has been suggested that

various isoforms are produced by alternative (splicing and alternative) transcriptional start sites. They have

been intensively analyzed in zebrafish (Kondrychyn et al., 2017) but have not yet been reported in great

detail in mammals. The human AUTS2 gene has two main transcripts, a full-length and a 30 short transcript
with an alternative transcription start site within exon 9 (Beunders et al., 2013), whereas mouse Auts2 has a

full-length and two 30 short isoforms arising from exon 8 and 9 (Hori and Hoshino, 2017). In the developing

mouse brain, AUTS2 is highly expressed in various brain regions including cerebral cortex, hippocampus,

and cerebellum (Bedogni et al., 2010). The knockdown of zebrafish auts2 bymorpholino leads to the drastic

reduction of brain size, especially in caudal regions including the midbrain and hindbrain as well as the cer-

ebellum (Oksenberg et al., 2013), suggesting that AUTS2 is crucial for brain tissue development. We have

previously reported that cytoplasmic AUTS2 regulates actin cytoskeletal rearrangements via Rho family

small GTPases, Rac1 and Cdc42, to control neuronal migration and neurite formation in the cortical neu-

rons of prenatal forebrains (Hori and Hoshino, 2017). In addition, another group showed that nuclear

AUTS2 interacts with histone modifiers such as Polycomb group (PcG) protein complex PRC1 and histone

acetyltransferase P300 and acts as a transcriptional activator (Gao et al., 2014). Moreover, we previously

showed that AUTS2 restricts the number of excitatory synapses without affecting that of inhibitory synapses

in the telencephalon (Hori et al., 2020). This function is elicited by nuclear AUTS2, because nuclear local-

izing, but not cytoplasmic-localizing, AUTS2 is able to rescue the corresponding synaptic abnormalities

in the Auts2-knockdowned primary cultured hippocampal neurons.

In the cerebellar cortex, the expression of Auts2 mRNA was reported to start in PCs from the early neuro-

developmental stages and is maintained through postnatal and adult stages (Bedogni et al., 2010). How-

ever, little is known with regard to the physiological roles of AUTS2 in PC development due to lack of

studies on the consequences of Auts2 gene deletion in the cerebellum. Moreover, the extent of AUTS2

contribution to the pathogenesis of psychiatric disorders associated with the cerebellum remains unclear.

Because conventional homozygous Auts2 knockout mice are neonatal lethal (Hori et al., 2014), it has been

difficult to study the function of AUTS2 in the cerebellum at postnatal stages and adulthood.

In this study, we generated Auts2 conditional knockout (cKO) mice by crossing Auts2flox mice with En1Cre

mice to disrupt the Auts2 locus in the cerebellum (Hori et al., 2014; Kimmel et al., 2000; Sgaier et al., 2007).

In the cerebella of these cKO mice, exon 8 of the Auts2 gene is deleted by the Cre recombinase activity,

leading to the complete elimination of both full-length AUTS2 (~170 kDa) as well as the C-terminal

AUTS2 short isoform variant 1 (S-AUTS2-Var1; ~88 kDa). In contrast, the C-terminal AUTS2 short isoform

variant 2 (S-AUTS2-Var2; ~78 kDa) that originates from exon 9 is aberrantly increased, as has been observed

in the cerebral cortex of Auts2 global KO mice (Hori et al., 2014). Auts2 cKO mice displayed drastic reduc-

tion of cerebellar size accompanied with reduced PC number. The maturation of PCs was delayed in Auts2

cKO mice, in terms of dendrite morphology and gene expression profile. Although CF synapse develop-

ment was impaired in the Auts2 cKO mice, excessive PF synapse formation was observed. Furthermore,

Auts2 cKO mice exhibited abnormal motor function and vocal communication behavior. Thus, these find-

ings suggest that Auts2 is involved in the maturation and synaptogenesis of PCs during cerebellar devel-

opment, contributing to vocal communication as well as motor function. Because vocal communication

deficits were also observed in heterozygous Auts2 cKO mice, this study should provide insight into under-

standing the pathology of human psychiatric disorders with AUTS2 mutations, which are in general,

heterozygous.

RESULTS

AUTS2 Is Specifically Expressed in Purkinje Cells and Golgi Cells in the Postnatal Cerebellar

Cortex

To investigate the role of AUTS2 in postnatal cerebellar development, we examined the expression of

AUTS2 in the cerebellum. Our previous study revealed that AUTS2 isoforms including the full-length
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(FL)-AUTS2 protein as well as the C-terminal short isoform variant 1 (S-AUTS2-Var1) are expressed in the

cerebral cortex (Hori et al., 2014). Western blotting analysis with whole cerebellar lysates showed that

FL-AUTS2 and S-AUTS2-Var1 are expressed at the late embryonic stage (E18.5), and expression gradually

decreases throughout postnatal development, although still observed at postnatal day 30 (P30) (Figure 1A).

Consistent with previous studies (Bedogni et al., 2010), in situ hybridization data from the Allen Brain Atlas

(http://portal.brain-map.org) show that Auts2 is highly expressed in PCs in adults (Figure 1B). In addition,

we found that Auts2 mRNA is also detected in certain cells in the granule cell layer (GCL) (Arrowheads in

Figure 1B). Co-immunostaining of adult cerebellar tissues using the anti-AUTS2 antibody with cell-specific

markers demonstrated that AUTS2 colocalized with calbindin, a marker for PCs (Figure 1C). Furthermore,

A

C

E

B

D

F

Figure 1. AUTS2 Expression in the Inhibitory Neurons in the Cerebellar Cortex

(A) Expression of AUTS2 in the developing cerebellum. Arrows indicate the full-length (FL-AUTS2) or C-terminal short

isoform variant 1 (S-AUTS2-Var1) of AUTS2 protein.

(B) In situ hybridization for Auts2 in P56 cerebellum (adapted from the Allen Brain Atlas, experiment #79904156).

Arrowheads indicate the expression of Auts2mRNA. ML: Molecular layer, PCL: Purkinje cell layer, GCL: Granule cell layer,

WM: White matter. Scale bar, 1 mm (left panel) and 100 mm (right panel).

(C–E) Co-immunostaining of AUTS2 with inhibitory neuronal markers Calbindin (Purkinje cells), Neurogranin (NG; Golgi

cells), and Parvalbumin (Parv; interneurons including stellate cells and basket cells at ML and Purkinje cells) in P25

cerebellar cortex. AUTS2 is expressed in Purkinje cells and Golgi cells (arrowheads in C and D), whereas there are no

detectable signals in the molecular layer interneurons (arrows in E). Scale bars, 50 mm.

(F) Summary diagram of AUTS2+ cells in inhibitory neurons in cerebellar cortex. PCs: Purkinje cells, GoCs: Golgi cells, SCs:

stellate cells, BCs: basket cells.

See also Figure S1.
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immunofluorescence analyses on the developing cerebellar tissue sections postnatally revealed intense

AUTS2 immunosignals in PCs equivalent to those observed in adult cerebellum (Figure S1), indicating

that AUTS2 expression is maintained in PCs in development and adulthood. Within the PCs, AUTS2 is

found in cell bodies including nuclei and dendrites (Figures 1C and S1). Consistent with Auts2 mRNA

expression, the immuno-signals for AUTS2 were also detected in the neurogranin-positive Golgi cells in

the GCL (Figure 1D) (Singec et al., 2003). In contrast, AUTS2 was not detected in the parvalbumin-positive

interneurons in the ML including stellate cells and basket cells (Figure 1E). These results suggest that

AUTS2 is exclusively expressed in PCs and Golgi cells in the cerebellar cortex during postnatal develop-

ment (Figure 1F).

Auts2 Conditional Knockout Mice Exhibit Defects in Cerebellar Development

We previously reported that homozygotes for the loss of function allele (Auts2del8) were neonatally lethal

(Hori et al., 2014). To better understand the roles for AUTS2 in postnatal cerebellar development, we gener-

ated Auts2 conditional KO (cKO) mice by crossing Auts2flox with En1Cre mice, in which exon 8 of Auts2 can

be specifically ablated in the rhombomere-1-derived brain area including the cerebellum from themid-em-

bryonic stages (E9.5~) (Figure 2A) (Kimmel et al., 2000; Sgaier et al., 2007). In this study, we analyzed the

En1Cre/+;Auts2flox/flox (homozygous Auts2 cKO) and Auts2flox/flox (control) mice unless otherwise noted.

As previously observed in the cerebral cortices of Auts2del8 mutants (Hori et al., 2014), immunoblotting

of cerebellar tissue extracts confirmed that in the Auts2 cKO cerebella, both FL-AUTS2 and S-AUTS2-

Var1 are eliminated, whereas S-AUTS2-Var2 that originates from exon 9 is abnormally increased (Figure 2B).

To confirm the specificity of the AUTS2 antibody used in immunoblotting, we performed immunostaining

using this antibody on prenatal cerebellum prepared from Auts2neo/neo homozygous mutant mice, in which

all AUTS2 isoforms were almost completely eliminated (Figure S2) (Hori et al., 2014). Immunofluorescence

shows the expression of AUTS2 in RORa-positive Purkinje cells in WT cerebellum, whereas immuno-signals

were almost completely absent in Auts2neo/neo homozygotes (Figure S2), indicating the high specificity of

this antibody for AUTS2. Moreover, quantitative PCR showed that excision of exon 8 within theAuts2mRNA

was almost complete in the cerebella of En1-Cre; Auts2flox/flox, whereas exon 8 remained intact in the ce-

rebral cortices of the same animals (Figure S3).

Auts2 cKO mutants were viable but had a significant reduction in body weight or exhibited developmental de-

lays (Figure 2C). At P30, cerebella isolated from the Auts2 cKO mice were smaller than those of controls (Fig-

ure 2D). Sagittal cerebellar sections ofAuts2 cKOmice revealedadramatic reduction in size of bothhemispheres

and vermis regions compared with control (Figure 2D). In addition,Auts2 cKOmutants exhibited aberrant cere-

bellar cortical morphologies. Several lobules including lobe X, Crus I, and copula pyramidis were severely

reduced in size or absent (Figure 2D). Sections ofAuts2 cKO cerebellar cortices revealed that although the basic

laminar structure consisting of ML-PCL-GCL was normal (Figure 2D), the total areas including bothML and GCL

were decreased by ~56% (Figure 2E). Furthermore, the number of PCs in Auts2 cKO mice were significantly

decreased, whereas the density of PCs was similar (Figures 2F and S4).

In addition to the cerebellum, En1 is expressed in the caudal midbrain (Sgaier et al., 2007). Although there

are no gross histological differences in the midbrain regions between Auts2 cKO mice and controls (data

not shown), we found that the number of dopaminergic midbrain neurons in the substantia nigra were

slightly but significantly reduced in Auts2 cKO mice compared with the control mice (Figure S5).

It is well established that the signaling factor Sonic Hedgehog (SHH), secreted from PCs, plays a key role for

GC expansion during the cerebellar development (Dahmane and Ruiz i Altaba, 1999). To determine

whether loss of Auts2 leads to reduced SHH expression or impairment of SHH signaling in the developing

cerebellum, we performed immunostaining for SHH and its downstream effector GLI1 on tissue sections

from the developing cerebellum. Immunofluorescence on cerebellum from Auts2 cKO mice at P7 showed

that the SHH immunosignals in PCs were comparable with control (Figure S6A). We also detected the

expression of GLI1 in the external granular layer (EGL) in both genotypes, suggesting that SHH signaling

functions normally to activate the expression of the SHH downstream effector(s) in granule neuron precur-

sors in the Auts2 cKO cerebellum (Figure S6A). Furthermore, RT-qPCR analysis revealed no significant dif-

ferences in the expression levels of these genes per cerebellar unit among the genotypes (Figure S6B).

These results imply that the reduction of GCs in the Auts2 mutants might be attributed to the reduction

of SHH due to the diminished number of PCs. Taken together, these results suggest that AUTS2 is critical

for cerebellar development.
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AUTS2 Regulates Dendritic Outgrowth of Purkinje Cells

Among the AUTS2-positive cerebellar inhibitory neurons, PCs play a key role in the output of processed

information and control of motor function. We therefore decided to focus on the roles of AUTS2 in PC

development. In the P0 cerebellar cortex, postmigratory PCs initially display ‘‘fusiform’’ morphology with

A

D

E F

B C

Figure 2. Cerebellar Hypoplasia in Auts2 Conditional Knockout Mice

(A) Schematics of the targeting strategy for Auts2 conditional knockout (Auts2 cKO) mice. Exon 8 of Auts2 gene was

conditionally deleted by crossing Auts2-floxed mice with Engrailed-1Cre/+ (En1Cre/+) mice.

(B) Immunoblot for AUTS2 proteins in cerebellar lysates from Auts2 flox/flox (Control; CTL) and En1Cre/+;Auts2 flox/flox

homozygotic cKO mice at P0. Immunoblot of lysates from HEK293T cells expressing the recombinant full-length AUTS2

(FL-AUTS2) and the C-terminal AUTS2 short variants (S-AUTS2-Var1 and Var2) are also shown. Full-length AUTS2 as well as

the S-AUTS2-Var1 were completely eliminated in Auts2 cKO homozygotic mutant cerebellum (red arrowheads), whereas

the S-AUTS2-Var2 was alternatively increased.

(C) Plot of body weights in control and Auts2 cKO mice from P7 to P30. n = 2–7 mice.

(D) Whole-mount images and Nissl-stained parasagittal sections in control and Auts2 cKOmice at P30. The folia of vermis

and hemisphere are indicated as roman numerals (I-X) and abbreviations (Sim: Simple lobule, Cr I and II: Crus I and II, Par:

Paramedian lobule, Cop: Copula pyramidis). Higher magnification images of the boxed regions showing ML-PCL-GCL

laminar structure. ML: Molecular layer, PCL: Purkinje cell layer, GCL: Granule cell layer. Scale bar, 1 mm and 50 mm.

(E) Quantification of cerebellar areas including whole, molecular layer (ML), granule cell layer (GCL) in parasagittal

sections of control and Auts2 cKO mice at P30. n = 6 slices from 3 mice.

(F) The number of PCs was decreased in the cerebellar vermis of Auts2 cKO at P30 compared with the control, but the

density of PCs was normal. n = 5 slices from 5 mice.

Data are shown as meanG SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by two-way ANOVA followed by Bonferroni’s multiple

comparisons test in (C), Mann-Whitney test in (E and F).

See also Figures S2–S6.
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a few primitive apical dendrites (Figure 3A). They then transform into ‘‘stellate cells’’ by retracting primitive

dendrites, which in turn, form multiple disoriented perisomatic dendrites by P4. During the next four days,

these irregular dendrites are progressively regressed concomitantly with the occurrence of single stem api-

cal dendrite (primary dendrite), and PCs enter the ‘‘young PC’’ stage by P8. Subsequently, PCs continue to

extend dendrites and form highly refined branches, reaching maximal lengths by around P20 (Sotelo and

Dusart, 2009). To investigate the dendritogenesis of PCs in Auts2 cKO mice, we used calbindin. In the con-

trol cerebellar cortex at P7, the majority of PCs displayed typical ‘‘young PC’’-like morphology, with a single

thick stem dendrite and elaborated branches (Figures 3B and 3C). In contrast, most of the PCs inAuts2 cKO

mice at the same age appeared stellate cell-like in shape with more than 2 perisomatic dendrites (Figures

3B and 3C). By P10, although the proportion of the cells with young PC morphologies was increased to

~60% in Auts2 cKOmice, higher numbers of PCs still exhibited stellate-like shapes compared with the con-

trols (Figures 3B and 3C). These observations suggest that the pruning process of PC dendrites is impaired

in Auts2 cKOmice. Consistent with a reduction in theML in Auts2 cKO cerebellum (Figure 2E), we observed

a reduction in dendritic outgrowth of PCs in Auts2 cKO cerebellum throughout postnatal stages

A B

C D

E
F

Figure 3. Loss of Auts2 Induces Impaired Maturation of PCs

(A) Schematics of PC morphology during the postnatal development.

(B) Representative immunofluorescent images of Calbindin-positive PCs in lobule IV/V from P7 to P20 in control (upper panels) and Auts2 cKO mice (lower

panels). Arrowheads indicate dendrites on the soma. Scale bars, 20 mm.

(C) Proportion of the number of primary dendrites formed on single PC soma in lobule IV/V at P7 and P10 in control (CTL) and Auts2 cKO mice. n = 259 cells

from 3 mice at P7 and P10 for control mice, and n = 246 cells from 3 mice at P7, n = 224 cells from 3 mice at P10 for Auts2 cKO mice.

(D) Measurement of dendrite lengths of PCs in lobule IV/V toward the pia surface during postnatal development. n = 12–15 cells from 3 mice for control and

Auts2 cKO mice.

(E) Representative images of primary dendritic shafts of PCs in lobule IV/V labeled with Calbindin at P30 in control and Auts2 cKO mice. Scale bar, 20 mm.

(F) Reduced PC primary dendrite thickness of lobule IV/V in Auts2 cKO mice. n = 12–14 cells from 3 mice. Data are shown as mean G SEM. *p < 0.05, **p <

0.01, ***p < 0.001 by Chi-squared test in (C), two-way ANOVA followed by Bonferroni’s multiple comparisons test in (D), Mann-Whitney test in (F).

See also Figure S7.
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(Figure 3D). The diameter of the first segment of primary dendrites was significantly smaller in Auts2 cKO

PCs than that of control (Figures 3E and 3F).

We further examined whether the impairments in dendrite development of PCs in Auts2 cerebellum is

caused by the increased S-AUTS2-Var2 expression. Overexpression of S-AUTS2-Var2 in PCs in WT cere-

bellum did not, however, affect dendritic outgrowth nor its morphology (Figure S7), suggesting that the

defects in dendritogenesis in Auts2 cKO mutant PCs was not due to a gain-of function effect by increased

S-AUTS2-Var2. Taken together, these results suggest that AUTS2 is involved in proper development of PC

dendrites.

Loss of Auts2 Causes Abnormal CF and PF Synapse Formation in PCs

We next investigated the function of AUTS2 in PC synapse formation. PCs receive excitatory synaptic inputs

from CF neurons in the ION. The CF axon terminals from ION translocate upward from soma to primary

dendrites of PCs, forming excitatory synapses (CF synapses). Immunohistochemistry of postnatal cere-

bellar sections with VGlut2, a marker for presynaptic terminals of the CFs, showed that, at P15, VGlut2-

puncta traversed 70.45 G 1.54% of the ML thickness in control cerebella, whereas they were found only

in the deeper regions (35.93 G 3.01%) of the ML in the Auts2 cKO cerebella (Figures 4A and 4B). Although

those VGlut2-puncta gradually translocated upward in the Auts2 cKO cerebella as development pro-

ceeded, they never reached the level of the control mice at P30 (Figures 4A and 4B). Similarly, VGlut2-

puncta in the ML at Auts2 cKO cerebella were significantly decreased compared with the controls (Figures

S8A and S8B). This suggests that development of CF synapses, particularly their translocation process, is

delayed in Auts2 cKO mice.

We next assessed the parallel fiber (PF) synapses by immunostaining with GluD2, a molecular marker for PF

synapses in PC dendrites (Yamasaki et al., 2011). In contrast to the CF synapses, we observed that loss of

Auts2 resulted in an increase of the GluD2-immunoreactivities in the ML of Auts2 cKOmice compared with

those of control mice at P15 and P30 (Figures 4C and 4D). Likewise, high-magnification images in the ML

showed that the density of GluD2-puncta was significantly higher in Auts2 cKOmice (Figures S8C and S8D),

suggesting that loss of Auts2 leads to excessive PF synapse formation. Golgi staining also revealed that the

dendritic spine density at the distal end of the PC dendrites was significantly increased in Auts2 cKO mu-

tants compared with controls at P16 and P30 (Figures 4E and 4F). Because the distal part of PC dendrites is

predominantly occupied by PF synapses (Altman, 1972), the increased number of synapses in the Auts2

cKO cerebella were regarded as PF synapses. These findings suggest that Auts2 is required for normal

development of CF synapses, while restricting the number of PF synapses. We confirmed that overexpres-

sion of S-AUTS2-Var2 in the PCs in WT cerebellum did not alter the translocation of CF synapses (Figure S9)

as well as the number of dendritic spines at the distal end of PC dendrites (Figure S10), suggesting that the

aberrant excitatory synapse development observed in Auts2 cKO mutants is caused by loss of function of

AUTS2.

It was previously reported that AUTS2 acts as a transcriptional regulator for neural development (Gao et al.,

2014). Furthermore, our previous RNA-seq analysis showed that disruption of Auts2 in mouse forebrains

resulted in changes in global expression of genes associated with multiple aspects of neurodevelopment,

including dendrite morphogenesis and synapse development (Hori et al., 2020). Quantitative PCR analysis

showed no significant changes in the expression levels of RORa (Figure S11A) (Takeo et al., 2015). Mean-

while, we observed the downregulation of Cacna1a, which reportedly regulates the excitatory synapse for-

mation in PCs, in the Auts2 cKO mice (Figure S11A) (Hashimoto et al., 2011; Miyazaki et al., 2004, 2012).

Furthermore, we verified that the intensity of CaV2.1 (a product of Cacna1a gene) immunostaining, is mark-

edly reduced inAuts2 cKO PCs (Figures S11B and S11C). These results imply that AUTS2may be involved in

CF and PF synapse development by regulating the expression of synaptic genes, such as Cacna1a.

Purkinje-Cell-Specific Auts2 Knockdown Impairs Excitatory Synapse Functions

Next, we performed an electrophysiological analysis to investigate the loss-of-function effects of Auts2 on

PCs of interest. To evaluate the cell-autonomous effects of Auts2 inactivation on the synaptic transmission

properties of PCs, we introduced a vector expressing EGFP and Auts2-targeted microRNA (miRNA) driven

by the PC-specific L7 promoter into PCs by in utero electroporation at E11.5-12.5 (Figure 5A). This miRNA

was confirmed by western blotting to successfully downregulate the expression of both FL-AUTS2 and

C-terminal short isoforms (Figure S12). Immunohistochemical analysis revealed that EGFP-positive cells
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were co-labeled with the PC marker, Car8 (Figure 5B) (Patrizi et al., 2008). We subsequently performed

whole-cell patch-clamp recordings in EGFP-positive or -negative PCs from acute cerebellar slices at

P20-30. To examine the basic properties of overall synaptic function in PCs targeted with the Auts2-knock-

down (KD) vector, we measured the miniature excitatory and inhibitory postsynaptic currents (mEPSCs and

mIPSCs, respectively). The amplitude and frequency of mEPSCs were significantly increased in EGFP-pos-

itive Auts2-KD PCs compared with non-transfected PCs (EGFP-negative), whereas those of mIPSCs were

not affected (Figures 5C and S13). The effect of Auts2-KD on mEPSCs was sufficiently restored by co-trans-

fection of an RNAi-resistant FL-AUTS2 (Auts2-Res) construct, which successfully excluded off-target effects

of the targeting miRNA (Figure S14). This suggests that FL-AUTS2 has the ability to regulate excitatory syn-

aptic transmission in PCs.

Next, we recorded climbing fiber-evoked EPSCs (CF-EPSCs) to test whether loss of Auts2 function in PCs

affected CF synapse function. During early postnatal stages, each PC cell body receives multiple CF pre-

synaptic inputs innervating from ION neurons. Subsequently, a single CF is selectively strengthened to

form CF synapses, translocating along the primary dendrites of the PC while the other surplus CFs are elim-

inated (Kano et al., 2018). We moved the stimulation electrode systematically around the PC soma under

recording and increased the stimulus intensity gradually at each stimulation site. The recording highlighted

that more than 80% of PCs in WT mature cerebellum show a single-step response to an evoked CF input,

indicating that the majority of PCs receive a single CF input (Figure 6A). By contrast, around half of Auts2-

KD PCs receivedmultiple CF inputs, compared with only 14% of non-transfected PCs (Figure 6A), indicating

that loss of Auts2 impairs the elimination of surplus CFs in PCs. We also examined the functional differen-

tiation of multiple CF inputs by calculating two parameters, the disparity ratio and disparity index (Hashi-

moto and Kano, 2003). The disparity ratio and index of Auts2-KD PCs were similar to non-transfected PCs

(Figure S15). Furthermore, we tested whether Auts2-KD PCs exhibited abnormal electrophysiological

properties of CF-EPSCs. We observed a longer 10%–90% rise time and shorter decay time, but a normal

amplitude in the total CF-EPSCs in Auts2-KD PCs (Table S1). Indeed, there was no difference in the extent

of paired-pulse depression at inter-pulse intervals from 10 to 300 msec between Auts2-KD and non-trans-

fected PCs, indicating that the release probability of CF synapses was normal in Auts2-KD PCs (Figure 6B).

We concluded that AUTS2 is required for the selection of a single CF to innervate PC by eliminating other

CFs.

Subsequently, we examined the electrophysiological properties of parallel fiber-evoked EPSCs (PF-EPSCs).

The input-output curve shows that PF-EPSCs were markedly increased in Auts2-KD PCs (Figure 6C), consis-

tent with the increased number of PF synapses in Auts2 cKO mice observed by immunohistochemistry and

Golgi staining (Figures 4C–4F, S8C, and S8D). Interestingly, the extent of paired-pulse facilitation was

greater in Auts2-KD PCs, suggesting that AUTS2 is also involved in the release probability of PF synapses

(Figure 6D). Taken together, these results suggest that in PCs, AUTS2 is required for the regulation of PF

synaptic function.

Auts2 cKO Mice Display Motor Dysfunction and Impaired Vocal Communication

Next, we performed several behavioral analyses on Auts2 cKOmice. In the elevated platform test (Alvarez-

Saavedra et al., 2014), mice were placed on a small round elevated platform and the time for which mice

remained on the platform was recorded (Figure 7A). Auts2 cKO mice exhibited a significant decrease in

Figure 4. Delayed CF Translocation and Excessive PF Formation in Auts2 Conditional Knockout Mice

(A) Double immunostaining with calbindin (green) and climbing fiber (CF) synaptic marker VGlut2 (magenta) on the cerebellar lobule IV/V of control and

Auts2 cKO mice at P15 and P30. Scale bars, 20 mm.

(B) Quantitative analysis of the ratio of VGlut2 height to the tip of PC dendrites of lobule IV/V in control and Auts2 cKO cerebellum during P15-30. n = 12–15

cells from 3 mice.

(C) Representative images of co-immunostaining with PSD-95 (green) and parallel fiber (PF) postsynaptic marker GluD2 (magenta) of lobule IV/V in the

molecular layer (ML) of control and Auts2 cKO mice at P15 and P30. Scale bars, 20 mm.

(D) Increased immunofluorescence intensity levels of GluD2 in lobule IV/V of Auts2 cKO mice at P15 and P30. n = 72–108 areas from 3 mice.

(E) Representative images of the dendritic spines on distal PC dendrites in the Golgi-stained cerebellar lobule IV/V of control and Auts2 cKOmice at P16 and

P30. Scale bar, 1 mm.

(F) The density of distal dendritic spines on PCs of lobule IV/V was increased in Auts2 cKO mice at P16 and P30. n = 18–27 branches, 3 mice.

Data are shown as mean G SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by two-way ANOVA followed by Bonferroni’s multiple comparisons test in (B), Mann-

Whitney test or unpaired Student’s t-test in (D and F). Dotted lines and asterisks indicate the pial surface of the ML and PC soma, respectively.

See also Figures S8–S11.
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the length of time able to keep their balance on the platform compared with control mice, suggesting that

Auts2 cKOmice had defects in motor control (Figure 7A). We further examined the motor coordination and

motor learning with the accelerating rotarod test. Control and Auts2 cKO mice behaved similarly in the

three trials during the first day of testing (Figure 7B). However, on the second day, although the motor per-

formance of the control mice improved, Auts2 cKO mice did not show such improvement, suggesting that

Auts2 cKO mice had abnormalities in motor learning rather than in motor coordination (Figure 7B).

Figure 5. Knockdown of Auts2 in PCs Exhibits Enhanced Excitatory Synaptic Transmission

(A) Schematic diagrams indicate the knockdown (KD) experiments of Auts2 with PC-specific expression vector.

(B) Whole-mount and immunohistochemical images showing the successful introduction of Auts2-KD vector into PCs.

EGFP-positive cells are co-labeled with a PC marker, Car8 (red). Scale bar; 1 mm (upper), 200 mm (lower).

(C) Auts2-KD PCs enhance amplitude and frequency of mEPSC at P20-30. Panels show representative traces (upper left)

and summary graphs of the mEPSC amplitude and frequency (upper right). Bottom, cumulative probability distributions

of mEPSC amplitudes (left) and inter-event interval (right) in control and Auts2-KD PCs. n = 11 cells, 6 mice for control and

n = 13 cells, 5 mice for Auts2 KD. Data are shown as mean G SEM. *p < 0.05, **p < 0.01, by unpaired student t-test in bar

plots, Kolmogorov-Smirnov test in cumulative frequency plots.

See also Figures S12–S14.
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Subsequently, we measured ultrasonic vocalizations (USVs) of adult male mice. Male mice use courtship

USVs when exposed to female mice. However, both the number and duration of calls were eliminated in

homozygous Auts2 cKO males (En1Cre/+;Auts2flox/flox) (Figure 7C). This suggests that AUTS2 expression

in the cerebellum (or at least in the rhombomere 1 region) is critically required for male courtship USVs.

Interestingly, the number and duration of calls were significantly reduced even in heterozygous Auts2

cKO males (En1Cre/+;Auts2flox/+), suggesting that loss of one Auts2 allele leads to communication deficits.

This is very intriguing, because most patients with AUTS2 mutations are heterozygotes for this gene.

DISCUSSION

In this study, we showed that specific ablation of Auts2 in the cerebellum resulted in various structural,

physiological, and behavioral abnormalities. AUTS2 has been reported to have two distinct molecular and

cellular functions in neural development. We have previously reported that AUTS2 acts in cytoplasm to regulate

actin cytoskeleton by controlling Rho family GTPases, such as Rac1 and Cdc42 (Hori et al., 2014). Other groups

demonstrated that nuclear AUTS2 functions to regulate the transcriptional activity of genes as a component of

PRC1 (Gao et al., 2014; Russo et al., 2018). Although we cannot fully conclude whether the abnormalities

observed in Auts2 cerebellar cKO mice were caused by loss of function of either cytoplasmic or nuclear

AUTS2, we believe that most phenotypes, especially anatomical abnormalities including the reduced cerebellar

size, delay of PC maturation as well as aberrant synapse development, might be resulted from loss of nuclear

function of AUTS2, by the reasons described below. However, because cytoplasmic AUTS2 can also regulate

the cellular morphology via cytoskeletal rearrangements (Hori et al., 2014), it may be possible that abnormal

dendrite shapes, at least in part, are caused by loss of cytoplasmic AUTS2 function.

Figure 6. Knockdown of Auts2 in PCs Impairs CF Synapse Elimination and PF Synaptic Transmission

(A) Sample traces of CF-EPSCs (left) and frequency distributions of the number of CFs innervating each PC (right) for

Auts2-KD (blue) and control (white) PCs during P21-P30. n = 37 cells, 3 mice for control and n = 33 cells, 3 mice for Auts2

KD.

(B) Normal paired-pulse ratio of CF-EPSCs measured at increasing inter-stimulus intervals in control and Auts2-KD PCs at

P20-30 (left, representative traces; right, summary plots). n = 13 cells, 3 mice for control and n = 26 cells, 3 mice for Auts2

KD.

(C) Impaired input-output relationship of PF-EPSCs in Auts2-KD PCs at P20-30. (left, representative traces; right, summary

plots). n = 14 cells, 6 mice for control and n = 17 cells, 6 mice for Auts2 KD.

(D) Impaired paired-pulse ratio of PF-EPSCs in Auts2-KD PCs at P20-30 (left, representative traces; right, summary graph).

n = 13 cells, 6 mice for control and n = 16 cells, 6 mice for Auts2 KD. Data are shown as meanG SEM. *p < 0.05, **p < 0.01,

***p < 0.001, by Mann-Whitney U test in A, two-way ANOVA with Tukey’s post hoc analysis in B-D.

See also Figure S15 and Table S1.
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The Reduced Cerebellar Size in Auts2 cKO Mice

The Auts2 cKO mice exhibit a significant reduction in cerebellum size. The volume of the cerebellum is

largely determined by the number of GCs that make up the bulk of the cells. Since granule cell precursors

(GCPs) proliferate and survive with the support of SHH secreted from PCs (Dahmane and Ruiz i Altaba,

1999), the number of GCs may also be defined by the amount of SHH released from PCs. In the Auts2

cKO mice, the absolute number of PCs was greatly decreased (Figures 2F and S4), whereas the amount

of SHH expressed in the individual PCs did not seem to be altered between Auts2 cKO mice and the con-

trols (Figure S6). These results imply that the reduction of GCs in Auts2 cKO mice may be attributed to the

diminished number of PCs, resulting in a decrease in the amount of SHH in the cerebellum. During embry-

onic and postnatal development, we did not find increased apoptosis of PCs (data not shown). Therefore,

we believe that PC production from the cerebellar ventricular zone may be reduced in Auts2 cKO mice,

although we do not have any direct evidence. Previous in situ hybridization analysis showed that the

cerebellar ventricular zone expresses Auts2 (Bedogni et al., 2010), and, moreover, recent single-cell

RNA-sequencing analyses revealed that Auts2 is expressed in a subpopulation of neural progenitors in

both cerebral cortex and cerebellar primordium (Carter et al., 2018; Telley et al., 2019). In vitro analyses us-

ing mouse embryonic stem cells also demonstrated that the AUTS2-PRC1 complex is critical for neuronal

differentiation (Russo et al., 2018). These findings imply that AUTS2 may be involved in production of PCs

from the ventricular zone, although that issue is not the focus of this study. As to the decreased size ofAuts2

cKO cerebellum, we cannot rule out the possibility that AUTS2 intrinsically regulates the proliferation of

granule cells. Although we did not detect significant levels of AUTS2 protein in the differentiated granule

cells with our immunohistochemical conditions, other groups have reported that Auts2 mRNA is weakly

expressed in the neural progenitor cells at the rhombic lip and external granular layer (EGL) of cerebellar

Figure 7. Motor Dysfunction and Impaired Vocal Communication in Auts2 cKO Mice

(A) Auts2 cKO mice exhibit motor abnormality in elevated platform test. n = 8 mice.

(B) Auts2 cKO mice show impaired motor learning in an accelerating rotarod test. n = 13 mice for control mice and 9 mice

for Auts2 cKO mice.

(C) USV recordings show the severe impairments of vocal communication in Auts2 cKO mice. n = 23 mice for Auts2flox/+

mice, 18 mice for Auts2flox/flox mice, 5 mice for En1Cre/+ mice, 10 mice for En1Cre/+; Auts2flox/+ mice, 7 mice for En1Cre/+;

Auts2flox/flox mice.

Data are shown as mean G SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by Mann-Whitney test in (A and C), two-way ANOVA

followed by Bonferroni’s multiple comparisons test in (B).
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primordium (Bedogni et al., 2010). Auts2 cKO mice crossed with Cre lines with more restricted expression,

such as Atoh1-Cre (Fujiyama et al., 2009), will be useful for future studies to explore the role of AUTS2 in

cerebellar development.

The Involvement of AUTS2 in PC Maturation

The dendrite morphologies of Auts2 cKO PCs seemed immature for their developmental ages. The mutant

PCs tended to possess multiple primary dendrites on a single soma at P7 and P10 when control PCs usually

harbored a single trunk dendrite at those stages. Dendrite height within the ML was also lower for the

mutant PCs. These findings suggest Auts2 cKO PCs are immature for their developmental stages. Because

AUTS2 can regulate gene expression as a component of PRC1 (Gao et al., 2014), it is possible that AUTS2

directly or indirectly upregulates genes relevant for PC maturation. Those genes related to PC maturation

may regulate PC dendrite development, and their reduced expression may account for the immature

dendrite morphology of the Auts2 cKO PCs. Alternatively, it is also possible that the dendrite morphology

of PCs is regulated by cytoplasmic AUTS2. In general, the dendritic morphogenesis is strictly controlled by

a variety of cytoskeletal proteins and their regulators. Among them, Rho-family small GTPases such as

Cdc42 and Rac1 play pivotal roles in cytoskeletal reorganization during dendrite formation in neurons

(Donald et al., 2008; Luo et al., 1996; Puram and Bonni, 2013). We previously reported that the cytoplasmic

AUTS2 activates Rac1 via the Rac-GEF, P-Rex1, and Elmo2/Dock180 complexes while downregulating

Cdc42 activities via Intersectin 1 and 2. AUTS2-Rac1 signaling is crucial for proper neurite outgrowth

and branch formation in cerebral cortical neurons (Hori et al., 2014), implying that AUTS2 may regulate

the dendritic morphogenesis of PCs using a common molecular machinery to regulate actin cytoskeleton.

The Involvement of AUTS2 in Synapse Development on PCs

Previous studies indicated that AUTS2 is involved in various neurobiological functions ranging from

neuronal proliferation, differentiation as well as neuronal migration and neuritogenesis. Our histological

and electrophysiological analyses in this study revealed that AUTS2 is also required for proper synapse for-

mation in PCs. During early postnatal stages, multiple CFs initially innervate a single PC soma, and one sin-

gle CF is selectively strengthened and begins to form excitatory CF synapses on the PC dendrites, whereas

the remaining redundant CF synapses are subsequently eliminated (Kano et al., 2018). PCs also receive an

excitatory afferent from PFs of granule cells. PFs compete with CFs to form defined synapse territories on

PC dendrites, and PF synaptic activity plays an important role in the pruning of surplus CFs. These CF

refinement processes are highly regulated by various synaptic molecules. Among them, Cacna1a, a

gene encoding P/Q-type voltage-dependent Ca2+ channel (also called CaV2.1), plays pivotal role in CF

elimination and PF synapse boundary formation during postnatal development (Hashimoto et al., 2011;

Miyazaki et al., 2004, 2012). Similar to the synaptic phenotypes in Auts2 cKO mice, PCs lacking Cacna1a

exhibit increased PF innervation as well as impaired CF translocation. qPCR and immunohistochemistry re-

vealed that the expression of several synapticmolecules including CaV2.1/Cacna1awas decreased inAuts2

cKO cerebellum. These results raise the possibility that nuclear AUTS2, as a component of PRC1, may

participate in CF and PF synapse elimination/formation by regulating the expression of synaptic genes,

such as Cacna1a. There are few studies reporting the involvement of Cacna1a in the dendrite morphogen-

esis of PCs. Other yet unidentified genes downstream of AUTS2 may also play important roles.

In Auts2 cKOmice, excessive numbers of dendritic spines were formed in the distal region of PC dendrites.

Consistent with this, downregulation of Auts2 in PCs leads to the enhancement of PF-dependent excitatory

neurotransmission. We previously observed that Auts2mutant mice exhibited increased spine formation in

the forebrain, leading to the enhancement of excitatory synaptic inputs (Hori et al., 2020). A similar pheno-

type was observed in Auts2 cKO cerebellum; dendritic spine numbers as well as excitatory inputs were

increased without affecting inhibitory inputs in PCs. Because most of the dendritic spines and excitatory

inputs we observed should correspond to PF synapses, AUTS2 may also function to restrict the number

of PF synapses via its action in the cell nuclei, as was reported for the telencephalon (Hori et al., 2020).

The Involvement of Cerebellar Auts2 in Motor Function and Social Communication

The cerebellar neural circuit is well-known to be critical for motor coordination as well as motor learning

(Apps and Garwicz, 2005). The vestibulocerebellar tract, which projects to lobules IX and X of the nodular

cerebellum, carries information for balance (Maklad and Fritzsch, 2003; White and Sillitoe, 2013). We

observed that loss of Auts2 resulted in a reduction in cerebellar size, particularly of cerebellar subregions

such as lobe X, Crus I, and copula pyramidis. Consequently, Auts2 cKO mice displayed impaired motor
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control of balance as well as motor learning. These findings raise the possibility that dysgenesis of lobule X

observed in Auts2 cKO cerebellum contributes to the impairment in motor control.

Emerging evidence indicates that activation of PCs by the CF inputs drives motor skill learning such as ves-

tibulo-ocular reflex (VOR) (Nguyen-Vu et al., 2013), whereas disruption of genes involved in synaptic trans-

mission as well as intrinsic calcium signaling in PCs leads to impairment of motor learning (Aiba et al., 1994;

Chen et al., 1995; Miyata et al., 2001). AUTS2 potentially regulates the expression of some synapse-related

genes such as Cacna1a, which may participate in synapse formation required for motor function and

learning.

It has previously been reported that loss of GCs or their synaptic functions resulted in behavioral abnormal-

ities, such as motor incoordination and learning defects (Iskusnykh et al., 2018; Sathyanesan et al., 2018;

Yoo et al., 2014). It is therefore difficult to distinguish whether the abnormal behaviors observed in this

study were caused by the decreased cerebellar size or abnormal synapse formation, although we believe

that both morphological alterations might affect behavioral abnormalities.

Recent studies highlighted the important roles for the cerebellum in higher cognitive functions, such as

rewarding, social interaction, and social communication in addition to typical motor functions (Carta

et al., 2019; Tsai et al., 2012). For example, the transcription factor FOXP2 (forkhead box P2), is involved

in speech in humans, and disruption of Foxp2 in mice results in cerebellar abnormalities and an absence

of vocalization, suggesting an association of the cerebellum with vocal communication (Fujita et al.,

2008; Lai et al., 2001; Shu et al., 2005; Usui et al., 2017). Interestingly, Crus I was recently highlighted as a

region of the cerebellum linked to cognition, social interaction, and language processing in both rodents

and humans (Sokolov et al., 2017; Stoodley et al., 2017). Hence, dysgenesis of Crus I region might be

responsible for impairment of vocal communication in Auts2 cKO mice. Previous clinical studies reported

that some individuals withAUTS2mutations displaymicrocephaly, motor delay, and speech delay (Amarillo

et al., 2014; Sengun et al., 2016). Cerebellar ablation of Auts2 gene in mice results in a smaller cerebellum

and the impairment of vocal communication. Interestingly, impairment of vocal communication was also

observed in heterozygous Auts2 cKO mice. Because most patients carry heterozygous AUTS2 mutations,

we believe heterozygous Auts2 cKOmice and patients with AUTS2mutations may share a common pathol-

ogy as to communication deficits.

In addition to the cerebellum, the midbrain is also involved in motor control, motivation, and reward be-

haviors as well as addiction through the dopaminergic neuron system (Hegarty et al., 2013). Emerging

studies show that the blockade of the dopamine signaling pathway with dopamine receptor antagonists

impairs motor learning (Beeler et al., 2012). Moreover, optogenetic activation of the midbrain dopami-

nergic neurons induces positive affective USVs in rats (Scardochio et al., 2015), whereas the emission of

rat USVs can be repressed by dopamine antagonists (Brudzynski et al., 2012). In mature brains, a large pop-

ulation of dopaminergic neurons reside in the substantia nigra (SN) or ventral tegmental area (VTA) of the

ventral midbrain (Hegarty et al., 2013). These dopaminergic neurons arise from the En1-derived precursor

cells in rhombomere 1 during embryonic stages (Zervas et al., 2004). Bedogni et al. reported that Auts2

expression is found in TH-positive dopaminergic neurons in the SN and VTA in the midbrain (Bedogni

et al., 2010), suggesting that Auts2 is also disrupted in these neurons in Auts2 cKO mice. Intriguingly, we

found that the TH-positive dopaminergic neurons were reduced in Auts2 cKOmidbrains in adult mice (Fig-

ure S5), implying that the potential defects of the dopaminergic pathways in the midbrains may also

contribute to the behavioral abnormalities in Auts2 cKO mice. Interestingly, Oksenberg et al. demon-

strated by ChIP-sequencing analysis that AUTS2 binds to the promotor region of a Parkinson disease sus-

ceptibility gene, Uchl1, in the mouse (Oksenberg et al., 2014). Although further investigations are required

to assess how loss of Auts2 reduces dopaminergic neurons in the midbrain, our findings provide insights

into a potential role of AUTS2 in the onset or progression of Parkinson disease or extrapyramidal disorder.

We previously performed behavioral analyses on two types of Auts2 KO mice. In Auts2neo/+ mutants, the

expression of all isoforms was reduced approximately by 50%. In the other (Auts2del8/+), the expression

of FL-AUTS2 and S-AUTS2-Var1 was halved, whereas that of S-AUTS2-Var2 was increased. Interestingly,

we observed distinct behavioral abnormalities in social interaction, anxiety, and prepulse inhibition,

whereas no difference was detected in USVs. These observations suggested that abnormal overexpression

of S-AUTS2-Var2 caused the behavioral abnormalities in those assays, and, therefore, we cannot exclude
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the possibility that aberrant expression of S-AUTS2-Var2 may also affect the results of behavioral abnormal-

ities observed in this study.

This is the first investigation, to our knowledge, of the role of AUTS2 in the cerebellar development and

function. The pathological mechanisms underlying how defects of cerebellar development caused by

loss of AUTS2 function contribute to the psychiatric illnesses remain unclear. Further examination using

our Auts2 cKO mice will help to understand the pathological insights into the neurological disorders

caused by AUTS2 mutations.

Limitations of the Study

Using western blotting, we demonstrated that the expression of FL-AUTS2 and S-AUTS2-Var1 proteins was

eliminated in Auts2 cKO cerebella, whereas that of S-AUTS2-Var2 was increased. Because immunostaining

indicated that AUTS2 is expressed only in PCs and Golgi cells, such isoform changes may take place in PCs

and Golgi cells in the Auts2 cKO cerebella. However, it is difficult to confirm such isoform alteration with

immunohistochemistry, because currently available AUTS2 antibodies mostly target the C-terminal region

that is shared among all isoforms. Future studies to address the expression and function of each AUTS2

isoform in the cerebellum will require the development of better antibodies. With respect to behavioral

abnormalities and weight loss, defects in cells other than PCs, namely Golgi and midbrain cells, may be

involved. However, an miRNA study that reduced AUTS2 specifically in Purkinje cells resulted in abnormal

electrophysiological responses in Purkinje cells, suggesting that impairments of PC maturation and synap-

togenesis may likewise be caused by loss of AUTS2 in PCs.

Previously, we demonstrated that the impairments of neurite outgrowth in Auts2del8/del8 cortical neurons

were sufficiently restored by FL-AUTS2 (Hori et al., 2014). Furthermore, aberrant spine formation in the

Auts2-knockdown (KD) hippocampal neurons were also rescued by FL-AUTS2 but not the AUTS2 short iso-

forms (Hori et al., 2014). Although we did not assess the effects of loss of S-AUTS2-Var1 for PC dendrite and

synapse development, these earlier observations suggest that FL-AUTS2 may regulate dendritic morpho-

genesis of PCs as well as the development of excitatory synapses on PCs.

The electrophysiological abnormalities inmiRNA-introduced PCs were presumably caused by the loss of AUTS2

protein in a cell autonomous manner. However, we cannot exclude the possibility that they may be caused by

some non-cell autonomous effects, because miRNA can occasionally be introduced into adjacent PCs.

In the behavioral tests, Auts2 cKO mice exhibited abnormalities in the elevated platform test and rotarod

test, which suggests impairments in motor coordination and learning. However, there remains the possi-

bility that such abnormalities can also be caused by impaired emotional conditions, such as attention

deficit or decreased anxiety.
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Figure S1. AUTS2 expression in PCs during postnatal cerebellar development, Related to Figure 

1. 

Representative images of the PCs stained with anti-AUTS2 antibody in WT developing cerebellum 

at P0, 7 and 15. Scale bar, 50 µm. 

 

  



 

 
 

Figure S2. Characterization of the specificity of anti-AUTS2 antibody, Related to Figure 2. 

Immunostaining on the sagittal sections of the developing cerebellum (E13.5) using the AUTS2 

antibody showing the disappearance of AUTS2 immuno-signals in the RORa-positive PCs of 

Auts2neo/neo homozygotic mutants. Scale bar, 50 µm.   

 

  



 

 
 

Figure S3. Conditional deletion of Auts2 gene in Auts2 cKO cerebellum, Related to Figure 2. 

Auts2 mRNA levels in the cerebellum (Cb) and cerebral cortex (Cx) of neonatal Auts2 cKO 

homozygotic mutant mice and control mice (CTL). qPCR was performed using primers specific for 

the deleted exon (n=3-4 mice). Data are shown as mean ± SEM. ***p<0.001, unpaired t-test with 

Welch’s correction. 

 

 

  



 

 
 

 

Figure S4. Loss of Auts2 results in the reduction of PCs, Related to Figure 2. 

Graph showing the measurements of the number of PCs at each lobule in sagittal cerebellar vermis 

sections from adult Auts2 cKO mutants and control mice (n=4 mice). Data are shown as mean ± 

SEM. ***p<0.001, Mann-Whitney U test. 

 

  



 

 
 

Figure S5. Characterization of the dopaminergic neurons in Auts2 cKO midbrains, Related to 

Figure 2. 

(A) Immunofluorescence on coronal midbrain sections from P20 control and Auts2 cKO mice using 

anti-tyrosine hydroxylase (TH) antibody. Aq: aqueduct of midbrain. (B) Graph shows the density of 

the TH-positive dopaminergic neurons at substantia nigra (SN) and periaqueductal gray (PAG) in 

Auts2 cKO mice and controls (n=4-12 areas, 3 mice). Dopaminergic neurons were reduced in the 

SN of Auts2 cKO mutants. Data are presented as mean ± SEM. P<0.05, unpaired t-test. Scale bar, 

50 µm. 

 

  



 

 
Figure S6. Normal SHH signaling in the developing cerebellum of Auts2 cKO mice, Related to 

Figure 2. 

(A) Representative images of the postnatal (P7) sagittal cerebellar tissue sections from Auts2 cKO 

mutant and control mice stained with SHH (left panels) and GLI1 (right panels). (B) Graph shows the 

measurements of the transcript levels of SHH-signaling molecules in Auts2 cKO and control mice 

(n=3 mice) at P7. Data are shown as mean ± SEM. ns, not significant, unpaired t-test with Welch’s 

correction. 

  



 

 

 
 

Figure S7. Overexpression of S-AUTS2-Var2 does not affect dendritic outgrowth of PCs, Related 

to Figure 3. 

(A) Representative images of control (EGFP) and S-AUTS2-Var2-overexpressed PCs at P15. The 

expression vectors were electroporated into WT embryonic cerebellum at E12.5 and tissues were 

analyzed at P15. (B) Measurement of dendrite lengths of PCs toward the pial surface. n=6-8 cells 

from N=2-3 mice. N.S., not significant, Mann-Whitney U test. Scale bar, 20 µm. 

 



 
Figure S8. The density of CF and PF synapses in Auts2 cKO mice during postnatal development, 

Related to Figure 4.  

(A) Representative images showing double immunostaining with Calbindin (green) and vGluT2 

(magenta) in P30 control and Auts2 cKO mice in lobule IV/V. The vGluT2 immunoreactivities are 

binarized in the bottom. Dotted lines and asterisks indicate pial surface of the ML and PC soma, 

respectively. (B) Quantification of the density of vGluT2 puncta in ML from P15 to P30 control and 

Auts2 cKO cerebellum (n = 4-6 areas from N = 2-3 mice). (C) Representative images showing 

immunostaining with GluD2 (magenta) in P30 control and Auts2 cKO mice in the ML with high 

magnification. The GluD2-immunoreactivities are binarized at the bottom. (D) Measurements of the 

GluD2 puncta density in ML of control and Auts2 cKO mice at P15 and P30 (n = 40-54 areas from 3 

mice). Data are shown as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by 

unpaired t-test with Welch’s correction in (B) and Mann-Whitney U test in (D). Scale bar, 20 µm in 

(A) and 5 µm in (C). 



 

 
 

Figure S9. S-AUTS2-Var2-overexpressed PCs exhibit normal CF translocation, Related to Figure 

4. 

(A) Representative images of EGFP (control) and S-AUTS2-Var2-overexpressed PCs at P15. The 

expression vectors were introduced by in utero electroporation into WT embryonic cerebellum at 

E12.5 and cerebellar tissues stained with anti-GFP (green) and vGluT2 (magenta) were analyzed at 

P15. The vGluT2-immunoreactivities are binarized at the bottom. (B) Quantitative analysis of the 

ratio of vGluT2 height to the tip of PC dendrites (n =6 cells from 3 mice). Data are shown as mean 

± SEM. N.S., not significant, unpaired t-test. Scale bar, 20 µm. 

 

  



 

 

 

Figure S10. Characterization of dendritic spine formation in S-AUTS2-Var2-overexpressed PCs, 

Related to Figure 4. 

(A) Representative images of the spines on the distal end of dendrites from control (EGFP) and S-

AUTS2-Var2-overexpressed PCs at P15. Expression plasmids were electroporated into WT 

embryonic cerebellum at E12.5. (B) Quantification of the dendritic spine density on the distal end 

of dendrites from control and S-AUTS2-Var2-overexpressed PCs at P15 (n=5-6 dendrites from 2-3 

mice). Data are presented as mean ± SEM. N.S., not significant, Mann-Whitney U test. Scale bar, 2 

µm. 

 

  



 
 

Figure S11. Downregulation of CaV2.1 in the PCs of Auts2 cKO mice, Related to Figure 4. 

(A) qRT-PCR results show that expression levels of Cacna1a, but not Rora, was significantly reduced 

in Auts2 cKO mice at P7 (n = 6 mice). (B) Representative images of triple-immunostaining with 

CaV2.1(green), Calbindin (magenta) and Mef2c (blue) in P10 control and Auts2 cKO mice in 

cerebellar lobule VI. (C) Decreased immunofluorescence intensity levels of CaV2.1 normalized with 

Mef2c in PCs in control and Auts2 cKO mice. n=357-375 cells, 3 mice. Data are shown as mean ± 

SEM. **p < 0.01, ***p < 0.001 by unpaired t-test (A) and Mann-Whitney test (B). Scale bar, 20 µm. 

 

  



 
Figure S12. The efficacy of Auts2 miRNA vector, Related to Figures 5 and 6.  

(A) Representative images showing lysates of HEK293T cells transfected with or without control 

(pCL20c-trL7), Auts2 miRNA, FL-AUTS2, S-AUTS2-Var1 and S-AUTS2-Var2 expression vector that 

were immunoblotted with AUTS2 and b-actin antibodies. (B) Quantification of AUTS2 protein levels 

normalized with b-actin. N = 3 cells for lane 1 (control only), 2 (control and FL-AUTS2), 3 (Auts2 

miRNA and FL-AUTS2), 6 (control and S-AUTS2-Var2) and 7 (Auts2 miRNA and S-AUTS2-Var2); N = 

5 cells for lane 4 (control and S-AUTS2-Var1) and 5 (Auts2 miRNA and S-AUTS2-Var1). Data are 

shown as mean ± SEM. *p < 0.05, **p < 0.01, by Mann-Whitney U test or unpaired t-test with 

Welch’s correction in (B). 

 

  



 

 
 

Figure S13. Normal mIPSC in Auts2-KD PCs, Related to Figures 5. 

No effect of mIPSC in Auts2-KD PCs at P20-30. Panels depict representative mIPSC traces (left) and 

summary graphs of the mIPSC amplitude and frequency in control and Auts2-KD PCs. n= 19 cells, 

6 mice for control and n= 18 cells, 6 mice for Auts2 KD. Data are shown as mean ± SEM. ns; not 

significant, unpaired student t-test. 

 

  



 

 
Figure S14. Co-transfection of an RNAi-resistant Auts2 with the Auts2 targeted miRNA 

normalizes enhanced excitatory synaptic transmission by Auts2 knockdown, Related to Figures 

5. 

(A) Sample traces of mEPSCs for non-transfected (control) and transfected (Auts2 KD + Auts2-Res) 

PCs. (B) Summary bar graphs showing the amplitude and frequency of mEPSCs for control (white 

columns, n = 9 cells from 4 mice) and Auts2 KD + Auts2-Res (blue columns, n = 9 cells from 4 mice) 

PCs at P20-30. (C) Cumulative probability distributions of mEPSC amplitudes (left) and inter-event 

intervals (right) in control and Auts2-Res PCs. No significant differences were found. Data are shown 

as mean ± SEM. Mann-Whitney test in (B). 

  



 

 
 

Figure S15. Knockdown of Auts2 in PCs does not affect the selective strengthening of single 

CFs at P20-30, Related to Figures 6. 

(A, B) Quantification of the disparity ratio (A) showing the relative differences among the strengths 

of multiple CF-EPSCs, and of the disparity index (B) indicating the coefficient of variation for all CF-

EPSC amplitudes measured in a given PC. Methods for calculation are as previously described. n= 

6 cells, 3 mice for control and n= 20 cells, 4 mice for Auts2 KD. Data are shown as mean ± SEM. 

Unpaired student t-test in (A) and (B). 

 

  



 

 

 Control Auts2 KD P value 

Amplitudes (nA) 2.30 ± 0.14 2.93 ± 0.27 0.059 

10%-90% Rise Time (ms) 0.47 ± 0.02 0.57 ± 0.03 0.007** 

Decay Time constant (ms) 5.26 ± 0.24 4.27 ± 0.24 0.006** 

N(cells, mice) (23, 3) (26, 4)  

 

 

 

Table S1. Summary of electrophysiological characterization of the strongest CF-EPSCs in control 

and Auts2 knockdown PCs at P20-30, Related to Figures 6. 

 

Data are shown as mean ± SEM. p** < 0.01, unpaired Student’s t-test. 

 



Transparent Methods 

Experimental animals 

All animal experiments were conducted in accordance with the guidelines for the Animal Care and 

Use Committee of the National Center of Neurology and Psychiatry, and for the care and use of 

laboratory animals of the University of Tokyo and the Japan Neuroscience Society. Engrailed-1Cre/+ 

(En1Cre/+) mice and Auts2-floxed mice have been described previously (Hori et al., 2014; Kimmel et 

al., 2000). En1Cre/+ mice were obtained from The Jackson Laboratory. En1Cre/+ mice and Auts2-floxed 

mice were maintained in the C57BL/6N background. En1Cre/+ ;Auts2flox/flox homozygous mice were 

generated by crossing En1Cre/+ mice with Auts2flox/flox mice to obtain En1Cre/+ ;Auts2flox/+ heterozygous 

mutant progeny. En1Cre/+ ;Auts2flox/+ male mice were crossed with Auts2flox/flox female mice to yield 

litters of control mice (Auts2flox/+ or Auts2flox/flox), heterozygous (En1Cre/+ ;Auts2flox/+) and homozygous 

(En1Cre/+ ;Auts2flox/flox) mutant mice. Unless otherwise indicated, Auts2flox/flox mice were used as the 

control in this study. Mice were maintained in ventilated racks under a 12-h light/dark cycle. Food 

and water were provided ad libitum in temperature controlled, pathogen-free facilities. Only 

littermate male mice were used for behavioral tests. 

 

Plasmids 

 The plasmid construction of pCAG-Myc-AUTS2-full length, pCAG-Myc-AUTS2-var1, pCAG-Myc-

AUTS2-var2 were previously described (Hori et al., 2014). For Auts2 knockdown, the plasmid DNAs 

were designed to express EGFP and/or microRNA (miRNA) directed against Auts2 under the control 

of a truncated L7 promoter (pCL20c-trL7) (Sawada et al., 2010). Engineered microRNAs (5’- 

TGCTGATAAAGTGGAAGGTCGTGCCAGTTTTGGCCACTGACTGACTGGCACGATTCCACTTTAT-3’ 

and 5’- 

CCTGATAAAGTGGAATCGTGCCAGTCAGTCAGTGGCCAAAACTGGCACGACCTTCCACTTTATC-

3’) were designed against the mouse Auts2 coding sequence using the BLOCK-iT Pol II miR RNAi 

Expression Vector Kit guidelines (Invitrogen). Auts2 miRNA constructs were subcloned into the 

pCL20c-trL7. For Auts2 rescue experiments, the cDNA for Auts2 was obtained by PCR of a cDNA 

library from the cerebellum of P10 mice. The QuikChange Lightning site-directed mutagenesis kit 

(#210518, Agilent Technologies) was used to generate RNAi-resistant forms of Auts2 (Auts2-Res) in 

which seven nucleotides were mutated without changing the amino acid sequence in the miRNA 

targeted site. Auts2-Res was linked in-frame to EGFP interposed by a picornavirus ‘‘self-cleaving’’ 

P2A peptide sequence to enable efficient bicistronic expression. The cDNA was subcloned into 

pCL20c-trL7. 



 

Immunostaining and Nissl staining 

Whole brains were dissected out after mice were transcardially perfused with 4% paraformaldehyde 

(PFA) or periodate-lysine-paraformaldehyde (PLP) in 0.1M sodium phosphate buffer (pH 7.2) under 

deep isoflurane anesthesia. The brains were further fixed in 4% PFA or PLP for 2 hrs to overnight, 

cryoprotected with 30% sucrose, embedded in O.C.T. compound (Sakura Fine-Tek, Tokyo, Japan), 

and cryosectioned at 20 µm. Parasagittal sections were treated with blocking solution containing 

1% normal donkey serum (Merck Millipore, Burlington, MA, USA) and 0.2% TX-100 (Nacalai Tesque, 

Kyoto, Japan) for 1 h at room temperature and immunolabeled using the following primary 

antibodies in blocking solution at 4 °C overnight: goat-AUTS2 (1:300, EB09003, Everest Biotech, 

Bicester, UK), rabbit-AUTS2 (1:500, HPA000390, Sigma-Aldrich, St. Louis, MO, USA), rabbit-cleaved 

Caspase 3 (1:500, 9661S, Cell Signaling Technology, Danvers, MA, USA), rabbit-Calbindin (1:500, 

AB1778, Merck Millipore), goat-Calbindin (1:1000, Calbindin-Go-Af1040, Frontier Institute, 

Hokkaido, Japan), rabbit-Neurogranin (1:500, AB5620, Merck Millipore), mouse-Parvalbumin (1:200, 

P3088, Sigma-Aldrich), guinea pig-vGluT2 (1:500, VGluT2-GP-Af810, Frontier Institute), guinea pig-

PSD-95 (1:200, PSD95-GP-Af660, Frontier Institute), rabbit-GluD2 (1:200, GluD2C-Rb-Af1200, 

Frontier Institute), guinea pig-Car8 (1:200, Car8-GP-Af500, Frontier Institute), Rat-GFP (1:1000, 

#06083-05, Nacalai Tesque), Rabbit-Mef2c (1:500, D80C1, Cell Signaling Technology), guinea pig-

CaV2.1 (1:200, VDCCa1A-GP-Af810, Frontier Institute), rabbit-SHH (1:200, sc-9024, Santa Cruz) and 

goat-GLI1 (1:500, sc-6153, Santa Cruz). The tissue sections were subsequently labeled with 

secondary antibodies conjugated with Alexa Fluor 488, Alexa Fluor 568 or Alexa Fluor 647 (1:1000, 

abcam, Cambrige, UK). Cell nuclei were labeled with DAPI (1:3000, Thermo Fisher Scientific, 

Waltham, MA, USA) and for immunohistochemistry of AUTS2, antigen retrieval was performed using 

Target Retrieval Solution (Dako, Carpinteria, CA, USA) in a boiling jar pot for 20 min according to 

manufacturer’s procedure. For immunostaining of PSD-95 and GluD2, the tissue sections were pre-

treated with 0.2 mg/ml pepsin in 0.2N HCl for 20 min before primary antibody reaction as previously 

described with modifications (Fukaya and Watanabe, 2000; Yamasaki et al., 2011). Fluorescent 

images were acquired with a laser scanning confocal microscope (FV1000, Olympus, Tokyo, Japan) 

or Zeiss LSM 780 confocal microscope system and ZEN software (Carl Zeiss, Oberkochen, Germany). 

For Nissl staining, sections were stained with 0.1 % cresyl violet in 1 % acetic acid, dehydrated with 

ethanol series, mounted in Entellan, and observed with a Keyence All-in-One microscope (BZ-X700, 

Osaka, Japan). The cerebellar area, the number of PCs, dendritic height and diameter, the height 

and puncta number of vGluT2 and fluorescence intensities for GluD2-immunosignals were 



measured with Fiji software. For measurements of the height and puncta number of vGluT2, puncta 

with sizes greater than 0.5 µm2 were defined as vGluT2-positive CF presynapses whereas puncta 

smaller than 0.5 µm2 or located outside the dendritic shafts were considered as background noise 

(Miyazaki et al., 2004). The density of GluD2 puncta was automatically measured and calculated 

using “Trainable Weka segmentation”, “Auto Threshold “and “Analyze Particles” modules in Fiji 

software with modification. 

 

Immunoblotting 

For the detection of endogenous AUTS2 in the cerebellum, whole cerebella were solubilized with 

SDS sample buffer, and boiled at 95 °C for 5 min. Whole cerebella lysates (1 mg) were fractionated 

by SDS-PAGE, and transferred onto a nitrocellulose membrane (Bio-Rad, Hercules, California, USA), 

immunoblotted with primary antibodies including rabbit-AUTS2 (1:500, HPA000390, Sigma-Aldrich, 

St. Louis, MO, USA), rabbit-GAPDH (1:1000, 2118S, Cell Signaling Technology), and then visualized 

using HRP-conjugated secondary antibody (GE Healthcare, Chicago, IL, USA) followed by ECL 

prime (GE Healthcare, Chicago, IL, USA).  

For the evaluation of knockdown efficacy, HEK293T cells were simultaneously transfected with or 

without pCL20c-trL7, Auts2 miRNA, FL-AUTS2, S-AUTS2-Var1 and Var2 using Lipofectamine LTX 

Reagents (15338100, Invitrogen) according to manufacturer’s instructions. At 36-48 hrs after 

transfection, cells were harvested, solubilized with SDS sample buffer and boiled at 95 °C for 5 min. 

Samples were fractionated by SDS-PAGE with NextPage III gradient gels (GLX-3YGM, Gellex, Tokyo, 

Japan), transferred to nitrocellulose membranes, immunoblotted with primary antibodies including 

rabbit-AUTS2 (1:500) and mouse-b-Actin (1:1000, 6D1, MBL, Nagoya, Japan) and visualized with 

HRP-conjugated secondary antibody. Images were acquired by a cooled CCD camera (LAS-4000 

mini; Fujifilm, Kanagawa, Japan). 

 

Golgi staining 

Whole brains were subjected to Golgi impregnation solution (FD Rapid GolgiStain kit, FD 

NeuroTechnologies, Columbia MD, USA). Parasagittal sections at 80-100 µm thickness were 

prepared with cryostat (CM3050S, Leica, Germany) and mounted on gelatin-coated slides. Golgi-

Cox staining was performed according to manufacturer’s instructions. The sections were dehydrated 

with an ethanol series and embedded in Entellan (Merck, Darmstadt, Germany). After z-stack 

images of dendritic spines were captured using 3-zoom mode of Keyence microscope with a 100x 

oil-immersion objective, the length of dendrite and number of spines were manually quantified 



using Fiji software. 

 

Quantitative RT-PCR 

Total RNA from whole cerebella at P7 was purified with the Qiagen RNeasy Plus Universal mini 

kit (Qiagen, Hilden, Germany). One µg of purified RNA was reverse transcribed to cDNA using the 

ReverTra Ace qPCR RT kit (Toyobo, Osaka, Japan). Real-time qPCR was performed with PowerUp 

SYBR Green Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) with the Light Cycler® 96 

system (Roche, Basel, Switzerland). The relative expression was calculated via the 2D method and 

normalized to b-actin as the internal control. Primer sequences are as follows: Rora, fwd 5’-

GTGGAGACAAATCGTCAGGAAT-3’ and rev 5’-TGGTCCGATCAATCAAACAGTTC-3’; Cacna1a, 

fwd 5’- CACCGAGTTTGGGAATAACTTCA-3’ and rev 5’- ATTGTGCTCCGTGATTTGGAA-3’; Actb, 

fwd 5’-GGCTGTATTCCCCTCCATCG-3’ and rev 5’- CCAGTTGGTAACAATGCCATGT-3’. 

 

In utero electroporation (IUE) 

IUE experiments were performed as previously described (Takeo et al., 2015). In brief, pregnant 

C57BL/6 mice at E11.5 or E12.5 obtained from CLEA Japan (Tokyo, Japan) and Japan SLC (Tokyo, 

Japan) were deeply anesthetized with sodium pentobarbital (50-60 μg/g of body weight, 

intraperitoneal injection). Plasmid DNAs were dissolved in HEPES-buffered saline at a final 

concentration of 1-2 μg/μl together with Fast Green (0.3 mg/mL). The plasmid solution (1-3μl) was 

injected into the fourth ventricle by air pressure under the illumination of a flexible fiber optic light 

source and electrical pulses (33V, with a duration of 30ms, at intervals of 970 ms per pulse, 5 cycles) 

were applied with tweezer-type electrodes (CUY650P3; NEPA Gene, Chiba, Japan) and an 

electroporator (CUY21SC; NEPA Gene, Chiba, Japan).   

 

Electrophysiology 

The procedures for electrophysiological recordings have been described previously (Hashimoto and 

Kano, 2003). Briefly, mice at P21-30 were decapitated under CO2 anesthesia, and brains were rapidly 

removed and placed in chilled external solution (0-4°C) containing 125 mM NaCl, 2.5 mM KCl, 2 

mM CaCl2, 1 mM MgSO4, 1.25 mM NaH2PO4, 26 mM NaHCO3, and 20 mM glucose, bubbled with 

95% O2 and 5% CO2 (pH 7.4). Parasagittal cerebellar slices (250 µm) were prepared by using a 

vibratome slicer (VT-1200S, Leica, Germany). Whole-cell recordings were made from visually 

identified or fluorescent protein-positive using upright and fluorescence microscopes at 32°C 

(BX50W1, Olympus). We randomly chose the PCs in multiple lobules. Patch pipettes (1.5–2.5 MW) 



were filled with an intracellular solution composed of (in mM): 60 CsCl, 10 D-gluconate, 20 TEA-Cl, 

20 BAPTA, 4 MgCl2, 4 ATP, 0.4 GTP, and 30 HEPES (pH 7.3, adjusted with CsOH) for recording 

EPSCs; 124 CsCl, 10 HEPES, 10 BAPTA, 1 CaCl2, 4.6 MgCl2, 4 ATP, 0.4 GTP (pH 7.3, adjusted with 

CsOH) for recording miniature IPSCs (mIPSCs). The pipette access resistance was compensated by 

70%. Signals were sampled at 0.1-10 kHz and low-pass filtered at 0.05-2 kHz using an EPC10 patch 

clamp amplifier (HEKA-Electronik, Lambrecht/Pfalz, Germany). Picrotoxin (100 µM, Nacalai Tesque) 

and tetrodotoxin (0.5 µM, Nacalai Tesque) were added for recording miniature EPSCs (mEPSCs). 

NBQX (10 µM, Tocris), R-CPP (5 µM, Tocris) and tetrodotoxin (0.5 µM) were added for recording 

mIPSCs. Picrotoxin (100 µM) was added to block inhibitory synaptic transmission for recording 

climbing fiber-induced EPSCs (CF-EPSCs) and parallel fiber-induced EPSCs (PF-EPSCs). Holding 

potential was -10 mV for CF-EPSCs and -70 mV for PF-EPSCs, mEPSCs and mIPSCs (corrected for 

liquid junction potential). Stimulation pipettes (5-10 µm tip diameter) were filled with the normal 

ACSF and used to apply square pulses for focal stimulation (duration of 100 µs, amplitude of 0 V to 

100 V). CFs were stimulated in the granule cell layer at positions 20-100 μm away from the PC soma. 

Single or multiple steps of CF-EPSCs were elicited in a given PC when the intensity of stimulation 

was increased gradually. The numbers of CFs innervating the recorded PC was estimated based on 

the number of discrete CF-EPSC steps elicited on that PC (Hashimoto and Kano, 2003). PFs were 

stimulated in the molecular layer at the position where a maximum response was elicited with the 

stimulus current of 5 µA. The stimulus intensity was decreased gradually from 5 to 0.5 µA to obtain 

the input-output curve. Online data acquisition and offline data analysis were performed using 

PULSE and PULSE FIT software (HEKA-Electronik) or Minianalysis Program ver. 6.0.3 (Synaptosoft 

Inc, Fort Lee, NJ, USA). 

 

Elevated platform test 

 Elevated platform tests were carried out as previously described (Alvarez-Saavedra et al., 2014) 

with modifications. In brief, mice at the ages of 2-4 months were placed in the center of a 10 cm2 

round and 20 cm height elevated platform. The time mice remained on the platform was measured. 

 

Rotarod 

Mice at 2-4 months old were placed on an accelerating rod using Rotarod 47600 (Ugo Basile, Italy). 

After mice were placed on the rod at 4 rpm for 10 sec, the rod was set to accelerate from 4 rpm to 

40 rpm over 300 s. Mice were subjected to 3 trials per day for 2 consecutive days with 10 min 

interval between each trial. The time was measured until they fell from or clung to the rotating drum. 



 

Ultrasonic vocalizations (USVs) 

 Male mice at 8-15 weeks old were individually housed for a week prior to test time to habituate to 

the testing environment. Then, an unfamiliar 3 months old C57BL6/N wild type female mouse was 

placed into the test cage. Recordings started after USVs were detected and continued for 1 min. If 

USV was not detected for 100 s after male mice met female mice, the number of USVs was regarded 

as zero. USV recordings were acquired with an UltraSoundGate system (Avisoft bioacoustics, 

Glienicke, Germany) composed of a CM16/CMPA condenser microphone, Avisoft-UltraSoundGate 

116H computer interface, and Avisoft Recorder software with a sampling rate of 400 kHz. The 

number of and the duration of calls with tone frequencies between 40-170 kHz were automatically 

measured by MATLAB-based program USVSEG with modification to mouse USVs (Tachibana et al., 

2014). 

 

Statistical analysis 

 Sample size was determined by established methods. Data analyses were performed blinded to 

the genotype. All statistical analyses were performed by GraphPad Prism 8 (GraphPad Software, La 

Jolla, CA, USA) and IBM SPSS statistics 21 (IBM SPSS Inc., Chicago, IL, USA). The Shapiro-Wilk test 

was used for the confirmation of the normal distribution and if significant, a nonparametric Mann 

Whitney U test was applied for comparison. In case of comparison between two groups, the data 

within normal distribution and equal variance were analyzed using a two-tailed unpaired t-test. If 

equal variance of the data was significantly different, we used a two-tailed unpaired t-test with 

Welch’s correction. In case of comparison of more than two groups, two-way ANOVA followed by 

Bonferroni’s multiple comparisons test. 
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