38 research outputs found

    Distribution of cholinergic nerve terminals in the aged human brain measured with [18F]FEOBV PET and its correlation with histological data

    Get PDF
    Introduction: [18F]fluoroetoxybenzovesamicol ([18F]FEOBV) is a positron emission topography (PET) tracer for the vesicular acetylcholine transporter (VAChT), a protein located predominantly in synaptic vesicles in cholinergic nerve terminals. We aimed to use [18F]FEOBV PET to study the cholinergic topography of the healthy human brain. Materials and methods: [18F]FEOBV PET brain data volumes of healthy elderly humans were normalized to standard space and intensity-normalized to the white matter. Stereotactic atlases of regions of interest were superimposed to describe and quantify tracer distribution. The spatial distribution of [18F]FEOBV PET uptake was compared with histological and gene expression data. Results: Twenty participants of both sexes and a mean age of 73.9 ± 6.0 years, age-range [64; 86], were recruited. Highest tracer binding was present in the striatum, some thalamic nuclei, and the basal forebrain. Intermediate binding was found in most nuclei of the brainstem, thalamus, and hypothalamus; the vermis and flocculonodular lobe; and the hippocampus, amygdala, insula, cingulate, olfactory cortex, and Heschl's gyrus. Lowest binding was present in most areas of the cerebral cortex, and in the cerebellar nuclei and hemispheres. The spatial distribution of tracer correlated with immunohistochemical post-mortem data, as well as with regional expression levels of SLC18A3, the VAChT coding gene. Discussion: Our in vivo findings confirm the regional cholinergic distribution in specific brain structures as described post-mortem. A positive spatial correlation between tracer distribution and regional gene expression levels further corroborates [18F]FEOBV PET as a validated tool for in vivo cholinergic imaging. The study represents an advancement in the continued efforts to delineate the spatial topography of the human cholinergic system in vivo

    Spatiotemporal Interactions in Retinal Prosthesis Subjects

    No full text
    The authors show that synchronous and asynchronous stimulation on groups of electrodes in subjects with retinal prostheses leads to significant changes in the percept. Understanding how pulse timing across electrodes influences the percept is fundamental to the design of a functional retinal prosthesis

    How Emotions Influence Trust in Online Transactions Using New Technology

    No full text
    Online trust has recently become a critical issue, due to widely publicized information leaks, account hacking, and privacy breaches. This study investigates whether or not emotions have effects on trust in online transactions, particularly when a new technology is involved. We explored the effects of happiness and sadness on participants’ choice of a payment method for online transactions. Forty-four undergraduates participated in online transactions with a prototype webpage after either happiness or sadness induction, compared to a neutral group. Different emotion mechanisms would predict different effects of each emotion. Results showed that when the item cost was relatively low (10),ahigherpercentageofparticipantsinbothemotionconditionsselectedanovelpaymentmethodthanthoseinaneutralcondition.Withmoreexpensiveitems(10), a higher percentage of participants in both emotion conditions selected a novel payment method than those in a neutral condition. With more expensive items (50 and $100) the number of participants who chose the new option equally increased across all conditions because participants could benefit relatively a large amount of discount (10%) from the novel payment method. Various emotion mechanisms are discussed with our results

    Neuropathological evidence of body-first vs. brain-first Lewy body disease

    No full text
    Aggregation of alpha-synuclein into inclusion bodies, termed Lewy pathology, is a defining feature of Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). In the majority of post mortem cases, the distribution of Lewy pathology seems to follow two overarching patterns: a caudo-rostral pattern with relatively more pathology in the brainstem than in the telencephalon, and an amygdala-centered pattern with the most abundant pathology in the “center of the brain”, including the amygdala, entorhinal cortex, and substantia nigra, and relatively less pathology in the lower brainstem and spinal autonomic nuclei. The recent body-first versus brain-first model of Lewy Body Disorders proposes that the initial pathogenic alpha-synuclein in some patients originates in the enteric nervous system with secondary spreading to the brain; and in other patients originates inside the CNS with secondary spreading to the lower brainstem and peripheral autonomic nervous system. Here, we use two existing post mortem datasets to explore the possibility that clinical body-first and brain-first subtypes are equivalent to the caudo-rostral and amygdala-centered patterns of Lewy pathology seen at post mortem

    Establishing a stable, repeatable platform for measuring changes in sperm DNA methylation

    No full text
    Abstract Background Several independent research groups have shown that alterations in human sperm methylation profiles correlate with decreased fecundity and an increased risk of poor embryo development. Moving these initial findings from the lab into a clinical setting where they can be used to measure male infertility though requires a platform that is stable and robust against batch effects that can occur between sample runs. Operating parameters must be established, performance characteristics determined, and guidelines set to ensure repeatability and accuracy. The standard for technical validation of a lab developed test (LDT) in the USA comes from the Clinical Laboratory Improvement Amendments (CLIA). However, CLIA was introduced in 1988, before the advent of genome-wide profiling and associated computational analysis. This, coupled with its intentionally general nature, makes its interpretation for epigenetic assays non-trivial. Results Here, we present an interpretation of the CLIA technical validation requirements for profiling DNA methylation and calling aberrant methylation using the Illumina Infinium platform (e.g., the 450HM and MethylationEPIC). We describe an experimental design to meet these requirements, the experimental results obtained, and the operating parameters established. Conclusions The CLIA guidelines, although not intended for high-throughput assays, can be interpreted in a way that is consistent with modern epigenetic assays. Based on such an interoperation, Illumina’s Infinium platform is quite amenable to usage in a clinical setting for diagnostic work

    Thyroid [123I]MIBG uptake in Parkinson’s disease and diabetes mellitus

    No full text
    Thyroid [123I]MIBG uptake is proposed as a tool for differentiating between Parkinson’s disease (PD) and diabetes mellitus (DM) on [123I]MIBG scintigraphies since both patient groups show decreased cardiac uptake. One study compared thyroid [123I]MIBG uptake in DM and PD patients and reported reduced [123I]MIBG uptake only in the PD group. Here, we investigated thyroid [123I]MIBG uptake in patients with PD and DM and found severely reduced thyroid [123I]MIBG uptake in DM. Larger studies are needed to substantiate whether DM patients are more or less likely to exhibit decreased thyroid MIBG uptake compared to controls and PD patients
    corecore