1,271 research outputs found
Stationary wave patterns generated by an impurity moving with supersonic velocity through a Bose-Einstein condensate
Formation of stationary 3D wave patterns generated by a small point-like
impurity moving through a Bose-Einstein condensate with supersonic velocity is
studied. Asymptotic formulae for a stationary far-field density distribution
are obtained. Comparison with three-dimensional numerical simulations
demonstrates that these formulae are accurate enough already at distances from
the obstacle equal to a few wavelengths.Comment: 7 pages, 3 figure
Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation
Transcritical flow of a stratified fluid past a broad localised topographic
obstacle is studied analytically in the framework of the forced extended
Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible
signs for the cubic nonlinear term in the Gardner equation corresponding to
different fluid density stratification profiles. We identify the range of the
input parameters: the oncoming flow speed (the Froude number) and the
topographic amplitude, for which the obstacle supports a stationary localised
hydraulic transition from the subcritical flow upstream to the supercritical
flow downstream. Such a localised transcritical flow is resolved back into the
equilibrium flow state away from the obstacle with the aid of unsteady coherent
nonlinear wave structures propagating upstream and downstream. Along with the
regular, cnoidal undular bores occurring in the analogous problem for the
single-layer flow modeled by the forced KdV equation, the transcritical
internal wave flows support a diverse family of upstream and downstream wave
structures, including solibores, rarefaction waves, reversed and trigonometric
undular bores, which we describe using the recent development of the nonlinear
modulation theory for the (unforced) Gardner equation. The predictions of the
developed analytic construction are confirmed by direct numerical simulations
of the forced Gardner equation for a broad range of input parameters.Comment: 34 pages, 24 figure
Selective interlayer ferromagnetic coupling between the Cu spins in YBa Cu O grown on top of La Ca MnO
Studies to date on ferromagnet/d-wave superconductor heterostructures focus
mainly on the effects at or near the interfaces while the response of bulk
properties to heterostructuring is overlooked. Here we use resonant soft x-ray
scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between
the in-plane Cu spins in YBa Cu O (YBCO) superconductor when it
is grown on top of ferromagnetic La Ca MnO (LCMO) manganite
layer. This coupling, present in both normal and superconducting states of
YBCO, is sensitive to the interfacial termination such that it is only observed
in bilayers with MnO_2but not with La Ca interfacial
termination. Such contrasting behaviors, we propose, are due to distinct
energetic of CuO chain and CuO plane at the La Ca and
MnO terminated interfaces respectively, therefore influencing the transfer
of spin-polarized electrons from manganite to cuprate differently. Our findings
suggest that the superconducting/ferromagnetic bilayers with proper interfacial
engineering can be good candidates for searching the theorized
Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the
competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different
from the published versio
Spontaneous Crystallization of Skyrmions and Fractional Vortices in the Fast-rotating and Rapidly-quenched Spin-1 Bose-Einstein Condensates
We investigate the spontaneous generation of crystallized topological defects
via the combining effects of fast rotation and rapid thermal quench on the
spin-1 Bose-Einstein condensates. By solving the stochastic projected
Gross-Pitaevskii equation, we show that, when the system reaches equilibrium, a
hexagonal lattice of skyrmions, and a square lattice of half-quantized vortices
can be formed in a ferromagnetic and antiferromagnetic spinor BEC, respetively,
which can be imaged by using the polarization-dependent phase-contrast method
Delocalization and Diffusion Profile for Random Band Matrices
We consider Hermitian and symmetric random band matrices in dimensions. The matrix entries , indexed by x,y \in
(\bZ/L\bZ)^d, are independent, centred random variables with variances s_{xy}
= \E |h_{xy}|^2. We assume that is negligible if exceeds the
band width . In one dimension we prove that the eigenvectors of are
delocalized if . We also show that the magnitude of the matrix
entries \abs{G_{xy}}^2 of the resolvent is self-averaging
and we compute \E \abs{G_{xy}}^2. We show that, as and , the behaviour of \E |G_{xy}|^2 is governed by a diffusion operator
whose diffusion constant we compute. Similar results are obtained in higher
dimensions
Speeding up Simplification of Polygonal Curves using Nested Approximations
We develop a multiresolution approach to the problem of polygonal curve
approximation. We show theoretically and experimentally that, if the
simplification algorithm A used between any two successive levels of resolution
satisfies some conditions, the multiresolution algorithm MR will have a
complexity lower than the complexity of A. In particular, we show that if A has
a O(N2/K) complexity (the complexity of a reduced search dynamic solution
approach), where N and K are respectively the initial and the final number of
segments, the complexity of MR is in O(N).We experimentally compare the
outcomes of MR with those of the optimal "full search" dynamic programming
solution and of classical merge and split approaches. The experimental
evaluations confirm the theoretical derivations and show that the proposed
approach evaluated on 2D coastal maps either shows a lower complexity or
provides polygonal approximations closer to the initial curves.Comment: 12 pages + figure
Hedgehog Spin-texture and Berry's Phase tuning in a Magnetic Topological Insulator
Understanding and control of spin degrees of freedom on the surfaces of
topological materials are key to future applications as well as for realizing
novel physics such as the axion electrodynamics associated with time-reversal
(TR) symmetry breaking on the surface. We experimentally demonstrate
magnetically induced spin reorientation phenomena simultaneous with a
Dirac-metal to gapped-insulator transition on the surfaces of manganese-doped
Bi2Se3 thin films. The resulting electronic groundstate exhibits unique
hedgehog-like spin textures at low energies, which directly demonstrate the
mechanics of TR symmetry breaking on the surface. We further show that an
insulating gap induced by quantum tunnelling between surfaces exhibits spin
texture modulation at low energies but respects TR invariance. These spin
phenomena and the control of their Fermi surface geometrical phase first
demonstrated in our experiments pave the way for the future realization of many
predicted exotic magnetic phenomena of topological origin.Comment: 38 pages, 18 Figures, Includes new text, additional datasets and
interpretation beyond arXiv:1206.2090, for the final published version see
Nature Physics (2012
- …