28 research outputs found

    Quantum Collapse and the Second Law of Thermodynamics

    Full text link
    A heat engine undergoes a cyclic operation while in equilibrium with the net result of conversion of heat into work. Quantum effects such as superposition of states can improve an engine's efficiency by breaking detailed balance, but this improvement comes at a cost due to excess entropy generated from collapse of superpositions on measurement. We quantify these competing facets for a quantum ratchet comprised of an ensemble of pairs of interacting two-level atoms. We suggest that the measurement postulate of quantum mechanics is intricately connected to the second law of thermodynamics. More precisely, if quantum collapse is not inherently random, then the second law of thermodynamics can be violated. Our results challenge the conventional approach of simply quantifying quantum correlations as a thermodynamic work deficit.Comment: 11 pages, 2 figure

    Potential singularity mechanism for the Euler equations

    Get PDF
    Singular solutions to the Euler equations could provide essential insight into the formation of very small scales in highly turbulent flows. Previous attempts to find singular flow structures have proven inconclusive. We reconsider the problem of interacting vortex tubes, for which it has long been observed that the flattening of the vortices inhibits sustained self-amplification of velocity gradients. Here we consider an iterative mechanism, based on the transformation of vortex filaments into sheets and their subsequent instability back into filaments. Elementary fluid mechanical arguments are provided to support the formation of a singular structure via this iterated mechanism, which we analyze based on a simplified model of filament interactions

    Potential singularity mechanism for the Euler equations

    Get PDF
    Singular solutions to the Euler equations could provide essential insight into the formation of very small scales in highly turbulent flows. Previous attempts to find singular flow structures have proven inconclusive. We reconsider the problem of interacting vortex tubes, for which it has long been observed that the flattening of the vortices inhibits sustained self-amplification of velocity gradients. Here we consider an iterative mechanism, based on the transformation of vortex filaments into sheets and their subsequent instability back into filaments. Elementary fluid mechanical arguments are provided to support the formation of a singular structure via this iterated mechanism, which we analyze based on a simplified model of filament interactions

    Metabolic interactions between dynamic bacterial subpopulations

    Get PDF
    Individual microbial species are known to occupy distinct metabolic niches within multi-species communities. However, it has remained largely unclear whether metabolic specialization can similarly occur within a clonal bacterial population. More specifically, it is not clear what functions such specialization could provide and how specialization could be coordinated dynamically. Here, we show that exponentially growing Bacillus subtilis cultures divide into distinct interacting metabolic subpopulations, including one population that produces acetate, and another population that differentially expresses metabolic genes for the production of acetoin, a pH-neutral storage molecule. These subpopulations exhibit distinct growth rates and dynamic interconversion between states. Furthermore, acetate concentration influences the relative sizes of the different subpopulations. These results show that clonal populations can use metabolic specialization to control the environment through a process of dynamic, environmentally-sensitive state-switching

    Inferring Cell-State Transition Dynamics from Lineage Trees and Endpoint Single-Cell Measurements

    Get PDF
    As they proliferate, living cells undergo transitions between specific molecularly and developmentally distinct states. Despite the functional centrality of these transitions in multicellular organisms, it has remained challenging to determine which transitions occur and at what rates without perturbations and cell engineering. Here, we introduce kin correlation analysis (KCA) and show that quantitative cell-state transition dynamics can be inferred, without direct observation, from the clustering of cell states on pedigrees (lineage trees). Combining KCA with pedigrees obtained from time-lapse imaging and endpoint single-molecule RNA-fluorescence in situ hybridization (RNA-FISH) measurements of gene expression, we determined the cell-state transition network of mouse embryonic stem (ES) cells. This analysis revealed that mouse ES cells exhibit stochastic and reversible transitions along a linear chain of states ranging from 2C-like to epiblast-like. Our approach is broadly applicable and may be applied to systems with irreversible transitions and non-stationary dynamics, such as in cancer and development

    Metabolic interactions between dynamic bacterial subpopulations

    Get PDF
    Individual microbial species are known to occupy distinct metabolic niches within multi-species communities. However, it has remained largely unclear whether metabolic specialization can similarly occur within a clonal bacterial population. More specifically, it is not clear what functions such specialization could provide and how specialization could be coordinated dynamically. Here, we show that exponentially growing Bacillus subtilis cultures divide into distinct interacting metabolic subpopulations, including one population that produces acetate, and another population that differentially expresses metabolic genes for the production of acetoin, a pH-neutral storage molecule. These subpopulations exhibit distinct growth rates and dynamic interconversion between states. Furthermore, acetate concentration influences the relative sizes of the different subpopulations. These results show that clonal populations can use metabolic specialization to control the environment through a process of dynamic, environmentally-sensitive state-switching

    Cross-talk and interference enhance information capacity of a signaling pathway

    Get PDF
    A recurring motif in gene regulatory networks is transcription factors (TFs) that regulate each other, and then bind to overlapping sites on DNA, where they interact and synergistically control transcription of a target gene. Here, we suggest that this motif maximizes information flow in a noisy network. Gene expression is an inherently noisy process due to thermal fluctuations and the small number of molecules involved. A consequence of multiple TFs interacting at overlapping binding-sites is that their binding noise becomes correlated. Using concepts from information theory, we show that in general a signaling pathway transmits more information if 1) noise of one input is correlated with that of the other, 2) input signals are not chosen independently. In the case of TFs, the latter criterion hints at up-stream cross-regulation. We demonstrate these ideas for competing TFs and feed-forward gene regulatory modules, and discuss generalizations to other signaling pathways. Our results challenge the conventional approach of treating biological noise as uncorrelated fluctuations, and present a systematic method for understanding TF cross-regulation networks either from direct measurements of binding noise, or bioinformatic analysis of overlapping binding-sites.Comment: 28 pages, 5 figure
    corecore