A heat engine undergoes a cyclic operation while in equilibrium with the net
result of conversion of heat into work. Quantum effects such as superposition
of states can improve an engine's efficiency by breaking detailed balance, but
this improvement comes at a cost due to excess entropy generated from collapse
of superpositions on measurement. We quantify these competing facets for a
quantum ratchet comprised of an ensemble of pairs of interacting two-level
atoms. We suggest that the measurement postulate of quantum mechanics is
intricately connected to the second law of thermodynamics. More precisely, if
quantum collapse is not inherently random, then the second law of
thermodynamics can be violated. Our results challenge the conventional approach
of simply quantifying quantum correlations as a thermodynamic work deficit.Comment: 11 pages, 2 figure