65 research outputs found

    Integrating Virtual Reality, Motion Simulation and a 4D GIS

    Get PDF
    Geodesign requires the visualization of concepts and ideas within a context of geo-information of the respective place in a way that is understandable to people with different backgrounds – planners, geographers, architects, but also the users or inhabitants of the place. All of the roles involved have different requirements and need different information to fulfil their tasks within the geodesign process. In this contribution, we present the structure of a software system combining a GIS, a simulation system and a VR component, as well as interfaces to different interaction devices (like a GPS receiver, a spacemouse, multi-screen projection systems or devices for haptic feedback). This enables simulations of the place in its geographical context, as well as immersive presentations that are understandable regardless of the knowledge of a plan’s symbolic language. All this happens without the need to convert frequently between the software tools that are commonly used by the different roles

    Strategies for acquiring the phospholipid metabolite inositol in pathogenic bacteria, fungi and protozoa: making it and taking it

    Get PDF
    myo-Inositol (inositol) is an essential nutrient that is used for building phosphatidylinositol and its derivatives in eukaryotes and even in some eubacteria such as the mycobacteria. As a consequence, fungal, protozoan and mycobacterial pathogens must be able to acquire inositol in order to proliferate and cause infection in their hosts. There are two primary mechanisms for acquiring inositol. One is to synthesize inositol from glucose 6-phosphate using two sequentially acting enzymes: inositol-3-phosphate synthase (Ino1p) converts glucose 6-phosphate to inositol 3-phosphate, and then inositol monophosphatase (IMPase) dephosphorylates inositol 3-phosphate to generate inositol. The other mechanism is to import inositol from the environment via inositol transporters. Inositol is readily abundant in the bloodstream of mammalian hosts, providing a source from which many pathogens could potentially import inositol. However, despite this abundance of inositol in the host, some pathogens such as the bacterium Mycobacterium tuberculosis and the protist parasite Trypanosoma brucei must be able to make inositol de novo in order to cause disease (M. tuberculosis) or even grow (T. brucei). Other pathogens such as the fungus Candida albicans are equally adept at causing disease by importing inositol or by making it de novo. The role of inositol acquisition in the biology and pathogenesis of the parasite Leishmania and the fungus Cryptococcus are being explored as well. The specific strategies used by these pathogens to acquire inositol while in the host are discussed in relation to each pathogen's unique metabolic requirements

    Data management for eRobotics applications

    No full text

    Vernetzung mit Wald und Holz 4.0 auch für den Waldbesitzer

    No full text

    Modular Control System Architecture

    No full text
    corecore