23 research outputs found

    Single Perceptron Model for Smart Beam forming in Array Antennas

    Get PDF
    In this paper, a single neuron neural network beamformer is proposed. A perceptron model is designed to optimize the complex weights of a dipole array antenna to steer the beam to desired directions. The objective is to reduce the complexity by using a single neuron neural network and utilize it for adaptive beamforming in array antennas. The selection of nonlinear activation function plays the pivotal role in optimization depends on whether the weights are real or complex. We have appropriately proposed two types of activation functions for respective real and complex weight values.   The optimized radiation patterns obtained from the single neuron neural network are compared with the respective optimized radiation patterns from the traditional Least Mean Square (LMS) method. Matlab is used to optimize the weights in neural network and LMS method as well as display the radiation patterns

    A Design of a 345-kV Electric Power Transmission Line Interlinking Ramu and Rouna Grids in Papua New Guinea

    Get PDF
    According to PNG Power Limited (PPL), Papua New Guinea’s peak power demand is expected to increase from 210 MW in 2012 to 347 MW in 2026. Under the current state of the power sector in Papua New Guinea (PNG), it is critical to implement measures to cope with the increasing power demand to promote investment, economic growth, and ultimately to achieve poverty reduction through economic growth. One of the solutions identified to improve the reliability of PNG power systems and thus to meet the demand is to interconnect the major grids in the country so that the loads could be shared among them. This project embarks in designing a 345-kV electric power transmission line to interlink the Ramu and Rouna power grids of Papua New Guinea. The design is done by analysing all the necessary aspects of the transmission lines with in-depth calculations performed using MATHCAD software. This design is the basis for extra-high voltage (EHV) transmission network in anticipation for the power generation and demand growth in PNG

    Accuracy of Perceptron based beamforming for embedded smart and MIMO antennas

    Get PDF
    Array antennas have a nonlinear, complex relationship between the antenna beams generated and the array input functions that generate the steerable beams. In this paper we demonstrate the use of a simple, computationally less intensive Perceptron Neural Network with non-linear sigmoid activation function to do the synthesis of the desired antenna beam. The single neuron is used, where its optimized weights will yield the beam shape required. This paper presents a successfully implemented Perceptron and discusses the error between the desired and Perceptron generated beams The successful beam control gives high accuracy in the maximum radiation direction of the desired beam, as well as optimization in the direction of null points. Moreover, a comparison between the array antenna beams obtained using the Perceptron Single Neuron Weight Optimization method (SNWOM) and the optimized beams obtained using the Least Mean Square (LMS) method, further demonstrates the reliability and accuracy of the Perceptron based beamformer. The tests were performed for two different desired antenna beams: one braod side beam and the other with the antenna radiating in four different desired directions. The Perceptron based antenna may be embedded in the Arduino microcontroller used. It is also shown why it is not possible to get a single beam, linear array antenna with the Perceptron based array reported herein

    A single beam smart antenna for wireless communication in a highly reflective and narrow environment

    Get PDF
    Multipath reflections are prevalent in underground mine wireless communication systems and are less constructive when an omnidirectional antenna is used. This phenomenon can be significantly controlled by eliminating the source of all multipaths with a single beam. The single beam must be rotatable towards the desired user to be of any use. The single directed beam will avoid generating multipath reflections and efficiently consume the valuable stored energy. In this paper we present an analysis of an array antenna using dipoles that forms a single beam without the need for reflectors or any complex arrangement of the array elements. It can be shown that dipole elements placed in a straight line are not effective in minimizing energy consumption and a minimum of three elements are sufficient for forming a single directed beam that is electronically rotatable to all directions. We have compared three, four and six elements for the accuracy. It is also shown that the elements of the array antenna should b placed on the circumference of a circle to avoid re-computation of weights to rotate the beam on to any desired direction, thus significantly reducing the computational burden of the single beam, steerable smart antenna

    Polygonal Dipole Placements for Efficient, Rotatable, Single Beam Smart Antennas in 5G Aerospace and Ground Wireless Systems

    Get PDF
    In telecommunication systems and radars, the common practice in using array antennas is to place a reflector behind the array so as to reflect the backward signal also in the forward direction. Moreover, in the 5G wireless systems, smart antennas, especially those with a single beam, are expected to play a critical role in its successful launching in 2020. We show in this paper that a linear array antenna necessarily ends up with symmetrical beamforming on both sides of the array axis. Thus, single direction (forward direction) beamforming cannot be achieved by placing the electromagnetic radiators (e.g. dipole elements) in a straight line. We propose that in situations where a smart array structure demands single rotatable beams, that single rotatable beamforming can be achieved by changing the geometrical shape of the array. However, the computational intensity involved in finding optimized weight coefficients for beamforming over the entire 360o space turns into the major challenge. In order to minimize the computational repetition of optimizing weights for every direction, a regular polygon array antenna is proposed. We show that an array antenna placed in a regular polygon yields a smart antenna with a highly effective and computationally fast, reduced memory and electronically rotatable single beam

    A Review of Sarawak Off-Grid Renewable Energy Potential and Challenges

    Get PDF
    Sarawak is the largest state in Malaysia, in spite of this, the population of Sarawak is relatively small and 42 percent of that population residing in the rural areas. Consequently, the Sarawak government is facing immense challenges in providing basic need such as electricity to the entire state due to the remoteness and small sizes of these settlements. Although the state produces sufficient amount of power, the cost of connecting these rural and non-rural small settlements to the grid is just impractical. The current energy scenario in Sarawak will be reviewed with a focus on the two reliable renewable energy resources currently being pursued by the Local Electrical Authority (LEA) for rural electrification projects which are the Hydro Power and Solar Energy. The paper will address the technical and localized challenges facing the micro-hydro and solar electric energy generation in Sarawak. The micro hydropower potential in Sarawak is estimated at 10.2MW but is not being fully developed due to difficulty in distinctive design and implementation which requires full participation and support from the local community to make it more economically viable and functionality in long run. In addition, Sarawak also receives a daily solar irradiation of more than 5 KWh/m2 throughout the year and that means huge potential for it to thrive. But design and implementation must be done carefully due to the tropical climate and operating temperature of the components. Ultimately, both renewable energy systems require trained personnel to attend to and involvement of LEA or any appointed agency to provide assistance and coordination are necessary to ensure greater success in rural electrification projects
    corecore