200 research outputs found
Making silicone rubber highly resistant to bacterial attachment using thiol-ene grafting
Biomedical devices are indispensable in modern medicine yet offer surfaces that promote bacterial attachment and biofilm formation, resulting in acute and chronic healthcare-associated infections. We have developed a simple method to graft acrylates to silicone rubber, polydimethylsiloxane (PDMS), a commonly used device material that is often colonized by bacteria. We demonstrate a novel method whereby nontoxic bacteria attachment-resistant polymers can be readily grafted from and grafted to the surface using thiol-ene chemistry, substantially reducing bacterial colonization. With use of this approach, bacterial biofilm coverage can be reduced by 99% compared with standard PDMS in an in vitro assay. This grafting approach offers significant advantages over commonly used physisorbed coatings, especially in areas of high shear or mechanical stress. Furthermore, the approach is versatile such that the grafted material properties can be tailored for the desired final application
PLGA‐PEG‐PLGA hydrogels induce cytotoxicity in conventional in vitro assays
Significance statement: We identified that PLGA‐PEG‐PLGA hydrogels, which have been used in human clinical trials and possess a demonstrable safety profile, induced significant cytotoxicity in conventional in vitro assays. This major contradiction may lead to inconsistent and misleading toxicology due to the limited biological representation of these assays. Cytotoxicity evaluation is a crucial element of screening the biological response to new biomaterials. However, as standard test methods do not recapitulate the in vivo environment, tailored adaptations may be required to reflect the true biological response elicited toward novel biomaterials
Multivariate ToF-SIMS image analysis of polymer microarrays and protein adsorption
The complexity of hyperspectral time of flight secondary ion mass spectrometry (ToF-SIMS) datasets makes their subsequent analysis and interpretation challenging, and is often an impasse to the identification of trends and differences within large sample-sets. The application of multivariate data analysis has become a routine method to successfully deconvolute and analyze objectively these datasets. The advent of high-resolution large area ToF-SIMS imaging capability has enlarged further the data handling challenges. In this work, a modified multivariate curve resolution image analysis of a polymer microarray containing 70 different poly(meth)acrylate type spots (over a 9.2 × 9.2 mm area) is presented. This analysis distinguished key differences within the polymer library such as the differentiation between acrylate and methacrylate polymers and variance specific to side groups. Partial least squares (PLS) regression analysis was performed to identify correlations between the ToF-SIMS surface chemistry and the protein adsorption. PLS analysis identified a number of chemical moieties correlating with high or low protein adsorption, including ions derived from the polymer backbone and polyethylene glycol side-groups. The retrospective validation of the findings from the PLS analysis was also performed using the secondary ion images for those ions found to significantly contribute to high or low protein adsorption
Cellular and microenvironmental cues that promote macrophage fusion and foreign body response
During the foreign body response (FBR), macrophages fuse to form foreign body giant cells (FBGCs). Modulation of FBGC formation can prevent biomaterial degradation and loss of therapeutic efficacy. However, the microenvironmental cues that dictate FBGC formation are poorly understood with conflicting reports. Here, we identified molecular and cellular factors involved in driving FBGC formation in vitro. Macrophages demonstrated distinct fusion competencies dependent on monocyte differentiation. The transition from a proinflammatory to a reparative microenvironment, characterised by specific cytokine and growth factor programmes, accompanied FBGC formation. Toll-like receptor signalling licensed the formation of FBGCs containing more than 10 nuclei but was not essential for cell-cell fusion to occur. Moreover, the fibroblast-macrophage crosstalk influenced FBGC development, with the fibroblast secretome inducing macrophages to secrete more PDGF, which enhanced large FBGC formation. These findings advance our understanding as to how a specific and timely combination of cellular and microenvironmental factors is required for an effective FBR, with monocyte differentiation and fibroblasts being key players
Development, printability and post-curing studies of formulations of materials resistant to microbial attachment for use in inkjet based 3D printing
Purpose: This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers.
Design/methodology/approach: The first step towards printing was ink development. Inks were characterised to carry out an estimation of their potential printability using the Z parameter to predict stable jetting conditions. Printability conditions were optimised for each ink using a Dimatix DMP-2800, which enabled 3D structures to be fabricated.
Findings: UV photo-initiated polymers, which resist bacterial attachment, were found to be printable using piezo-based inkjet printers. The waveform required for each ink depends on the value of the Z parameter. Once the waveform and the printability parameters were optimised, 3D objects were fabricated.
Research limitations/implications: This methodology has been confirmed as an effective method to 3D print materials that have been demonstrated to be bacteria resistant. However, ink curing depends on modification of some parameters (such as photoinitiator concentration or UV exposure time) which would result in an improvement of the curing process post jetting.
Social implications: The combination of inkjet based 3D printing with new materials resistant to bacterial attachment means the possibility of building customised medical devices with a high level of complexity and bespoke features can be fully realised. The scope and variability of the devices produced will exceed what can be achieved using standard fabrication methodologies and can be applied to reduce the incidence of device associated infections and to address increased morbidity, mortality and health care costs associated with nosocomial infections.
Originality/value: In this paper, the novel use of materials that resist bacterial attachment has been described to build 3D structures using material jetting. Its value lies on the potential impact this methodology could produce in the biomedical device and research fields
Development of dual anti-biofilm and anti-bacterial medical devices
The rising occurrence of antimicrobial resistance demands new strategies for delivering antibiotics to ensure their effective use. In this study, a multi-functional strategy to address medical device associated infections is explored whereby an anti-attachment and an antibacterial mechanism have been combined. Silicone catheters impregnated with multiple antibiotics are coated with polyacrylate coatings previously shown to reduce bacterial attachment and biofilm formation. Antibiotics are delivered through the applied coating and the delivery rate depends on the coating thickness and the calculated log P. Coated devices achieve a zone of inhibition and TK100 to Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus similar to those of uncoated devices, whilst maintaining anti-attachment properties. No adverse immunological responses of the coatings were observed. The multi-functional nature of the device developed in the study represents an important approach to combatting medical device associated infections
Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices
Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured through ink-jet-based 3D printing using bacterial biofilm inhibiting formulations without the need for eluting antibiotics or coatings. Candidate monomers were formulated and their processability and reliability demonstrated. Formulations for in vivo evaluation of the 3D printed structures were selected on the basis of their in vitro bacterial biofilm inhibitory properties and lack of mammalian cell cytotoxicity. In vivo in a mouse implant infection model, Pseudomonas aeruginosa biofilm formation on poly-TCDMDA was reduced by ∼99% when compared with medical grade silicone. Whole mouse bioluminescence imaging and tissue immunohistochemistry revealed the ability of the printed device to modulate host immune responses as well as preventing biofilm formation on the device and infection of the surrounding tissues. Since 3D printing can be used to manufacture devices for both prototyping and clinical use, the versatility of ink-jet based 3D-printing to create personalised functional medical devices is demonstrated by the biofilm resistance of both a finger joint prosthetic and a prostatic stent printed in poly-TCDMDA towards P. aeruginosa and Staphylococcus aureus.Engineering and Physical Sciences Research Council del Reino Unido-EP/I033335/2, EP/N024818/1, EP/P031684/1 y EP/L015072/1Wellcome Trust Senior Investigator Joint Awards del Reino Unido-103882/Z/14/Z y 103884/Z/14/
Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators
© 2019 The Royal Society of Chemistry. A novel single-well prototype high throughput microwave reactor geometry has been produced and shown to be capable of synthesizing an array of non-commercially available methacrylate monomers. The reactor, which delivers the energy required via a dedicated coaxial line, has been shown experimentally to outperform other conventional/microwave formats. It is demonstrated to achieve significantly higher conversions than the alternative reactor types, whilst requiring (a) low levels of input power, (b) no additional energy for agitation/mass transfer, (c) no solvent and (d) no environmentally impacting thermos-fluids
High throughput discovery of thermo-responsive materials using water contact angle measurements and time-of-flight secondary ion mass spectrometry
Switchable materials that alter their chemical or physical properties in response to external stimuli allow for temporal control of material-biological interactions, thus, are of interest for many biomaterial applications. Our interest is the discovery of new materials suitable to the specific requirements of certain biological systems. A high throughput methodology has been developed to screen a library of polymers for thermo-responsiveness, which has resulted in the identification of novel switchable materials. To elucidate the mechanism by which the materials switch, time-of-flight secondary ion mass spectrometry has been employed to analyse the top 2 nm of the polymer samples at different temperatures. The surface enrichment of certain molecular fragments has been identified by time-of-flight secondary ion mass spectrometry analysis at different temperatures, suggesting an altered molecular conformation. In one example, a switch between an extended and collapsed conformation is inferred
High throughput discovery of thermo-responsive materials using water contact angle measurements and time-of-flight secondary ion mass spectrometry
Switchable materials that alter their chemical or physical properties in response to external stimuli allow for temporal control of material-biological interactions, thus, are of interest for many biomaterial applications. Our interest is the discovery of new materials suitable to the specific requirements of certain biological systems. A high throughput methodology has been developed to screen a library of polymers for thermo-responsiveness, which has resulted in the identification of novel switchable materials. To elucidate the mechanism by which the materials switch, time-of-flight secondary ion mass spectrometry has been employed to analyse the top 2 nm of the polymer samples at different temperatures. The surface enrichment of certain molecular fragments has been identified by time-of-flight secondary ion mass spectrometry analysis at different temperatures, suggesting an altered molecular conformation. In one example, a switch between an extended and collapsed conformation is inferred
- …