489 research outputs found
Off-diagonal impedance in amorphous wires and application to linear magnetic sensors
The magnetic-field behaviour of the off-diagonal impedance in Co-based
amorphous wires is investigated under the condition of sinusoidal (50 MHz) and
pulsed (5 ns rising time) current excitations. For comparison, the field
characteristics of the diagonal impedance are measured as well. In general,
when an alternating current is applied to a magnetic wire the voltage signal is
generated not only across the wire but also in the coil mounted on it. These
voltages are related with the diagonal and off-diagonal impedances,
respectively. It is demonstrated that these impedances have a different
behaviour as a function of axial magnetic field: the former is symmetrical and
the latter is antisymmetrical with a near linear portion within a certain field
interval. In the case of the off-diagonal response, the dc bias current
eliminating circular domains is necessary. The pulsed excitation that combines
both high and low frequency harmonics produces the off-diagonal voltage
response without additional bias current or field. This suits ideal for a
practical sensor circuit design. The principles of operation of a linear
magnetic sensor based on C-MOS transistor circuit are discussed.Comment: Accepted to IEEE Trans. Magn. (2004
Fetal development and growth of the fissula ante fenestram in the human ear
Since the fissula ante fenestram (FAF) is considered as a focus of otosclerotic lesion and a route of perilymph leakage, there are few description of prenatal development of the cartilaginous canal passing though the cochlear wall. We examined the sagittal and frontal histological sections of the ear from 32 human fetuses at 8–37 weeks of gestational age. At 8–12 weeks, in the immediately anterior side of a connection between the cochlear and canalicular parts of the otic capsule cartilage, the FAF appeared as a tear of a cartilage between the basal and second turns of the cochlea. The tear became a slit opening to the scala vestibuli. At 13–15 weeks, the FAF, less than 1.2 mm in length, had the anterosuperior and postero-inferior apertures: the former was near the geniculate ganglion and became closed after 15 weeks, while the latter approached the oval window. Third trimester fetuses, the FAF, 1.5–2.0 mm in length, consistently carried a single, postero-inferior aperture extending along the anterior margin of the oval window and it contained no definite epithelium and vessel. Although it was endochondral ossification, there was no clear zonation in cartilage cells of the FAF. A mechanical stress during three-dimensional coiling of the cochlear ducts seemed to provide the FAF. After the FAF was established, the stapes footplate might use a part of the inferior aperture for the syndesmosis. A specific ossification was seen in the FAF, but it might rarely cause the pathological syndesmosis
Investigating Sub-Spine Actin Dynamics in Rat Hippocampal Neurons with Super-Resolution Optical Imaging
Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM)–based single-molecule tracking technique to analyze F-actin movements with ∼30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow) and kinetic (F-actin turn-over) dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of ∼138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines
Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe
The actin cytoskeleton of dendritic spines plays a key role in morphological aspects of synaptic plasticity. The detailed analysis of the spine structure and dynamics in live neurons, however, has been hampered by the diffraction-limited resolution of conventional fluorescence microscopy. The advent of nanoscopic imaging techniques thus holds great promise for the study of these processes. We implemented a strategy for the visualization of morphological changes of dendritic spines over tens of minutes at a lateral resolution of 25 to 65 nm. We have generated a low-affinity photoconvertible probe, capable of reversibly binding to actin and thus allowing long-term photoactivated localization microscopy of the spine cytoskeleton. Using this approach, we resolve structural parameters of spines and record their long-term dynamics at a temporal resolution below one minute. Furthermore, we have determined changes in the spine morphology in response to pharmacologically induced synaptic activity and quantified the actin redistribution underlying these changes. By combining PALM imaging with quantum dot tracking, we could also simultaneously visualize the cytoskeleton and the spine membrane, allowing us to record complementary information on the morphological changes of the spines at super-resolution
Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis
Dendritic spines are small protrusions along dendrites where the postsynaptic components of most excitatory synapses reside in the mature brain. Morphological changes in these actin-rich structures are associated with learning and memory formation. Despite the pivotal role of the actin cytoskeleton in spine morphogenesis, little is known about the mechanisms regulating actin filament polymerization and depolymerization in dendritic spines. We show that the filopodia-like precursors of dendritic spines elongate through actin polymerization at both the filopodia tip and root. The small GTPase Rif and its effector mDia2 formin play a central role in regulating actin dynamics during filopodia elongation. Actin filament nucleation through the Arp2/3 complex subsequently promotes spine head expansion, and ADF/cofilin-induced actin filament disassembly is required to maintain proper spine length and morphology. Finally, we show that perturbation of these key steps in actin dynamics results in altered synaptic transmission
- …