1,271 research outputs found

    Fractional Quantum Hall Effect in Topological Flat Bands with Chern Number Two

    Full text link
    Recent theoretical works have demonstrated various robust Abelian and non-Abelian fractional topological phases in lattice models with topological flat bands carrying Chern number C=1. Here we study hard-core bosons and interacting fermions in a three-band triangular-lattice model with the lowest topological flat band of Chern number C=2. We find convincing numerical evidence of bosonic fractional quantum Hall effect at the ν=1/3\nu=1/3 filling characterized by three-fold quasi-degeneracy of ground states on a torus, a fractional Chern number for each ground state, a robust spectrum gap, and a gap in quasihole excitation spectrum. We also observe numerical evidence of a robust fermionic fractional quantum Hall effect for spinless fermions at the ν=1/5\nu=1/5 filling with short-range interactions.Comment: 5 pages, 7 figures, with Supplementary Materia

    Non-Abelian Quantum Hall Effect in Topological Flat Bands

    Full text link
    Inspired by recent theoretical discovery of robust fractional topological phases without a magnetic field, we search for the non-Abelian quantum Hall effect (NA-QHE) in lattice models with topological flat bands (TFBs). Through extensive numerical studies on the Haldane model with three-body hard-core bosons loaded into a TFB, we find convincing numerical evidence of a stable ν=1\nu=1 bosonic NA-QHE, with the characteristic three-fold quasi-degeneracy of ground states on a torus, a quantized Chern number, and a robust spectrum gap. Moreover, the spectrum for two-quasihole states also shows a finite energy gap, with the number of states in the lower energy sector satisfying the same counting rule as the Moore-Read Pfaffian state.Comment: 5 pages, 7 figure

    Testing Technicolor Models via Top Quark Pair Production in High Energy Photon Collisions

    Get PDF
    Pseudo-Goldstone boson contributions to ttˉt\bar{t} production rates in technicolor models with and without topcolor at the s=0.5and1.5\sqrt{s}=0.5 and 1.5 TeV photon colliders and hadron colliders are reviewed. For reasonable ranges of the parameters, the contributions are large enough to be experimentally observable. Models with topcolor, without topcolor and the MSSM with tanβ1\tan\beta\geq 1 can be experimentally distinguished.Comment: Talk given by H.Y. Zhou at the III International Conference on Hyperons,Charm and Beauty Hadrons,Genova,Italy,June 30-July 3 199
    corecore