1,271 research outputs found
Fractional Quantum Hall Effect in Topological Flat Bands with Chern Number Two
Recent theoretical works have demonstrated various robust Abelian and
non-Abelian fractional topological phases in lattice models with topological
flat bands carrying Chern number C=1. Here we study hard-core bosons and
interacting fermions in a three-band triangular-lattice model with the lowest
topological flat band of Chern number C=2. We find convincing numerical
evidence of bosonic fractional quantum Hall effect at the filling
characterized by three-fold quasi-degeneracy of ground states on a torus, a
fractional Chern number for each ground state, a robust spectrum gap, and a gap
in quasihole excitation spectrum. We also observe numerical evidence of a
robust fermionic fractional quantum Hall effect for spinless fermions at the
filling with short-range interactions.Comment: 5 pages, 7 figures, with Supplementary Materia
Non-Abelian Quantum Hall Effect in Topological Flat Bands
Inspired by recent theoretical discovery of robust fractional topological
phases without a magnetic field, we search for the non-Abelian quantum Hall
effect (NA-QHE) in lattice models with topological flat bands (TFBs). Through
extensive numerical studies on the Haldane model with three-body hard-core
bosons loaded into a TFB, we find convincing numerical evidence of a stable
bosonic NA-QHE, with the characteristic three-fold quasi-degeneracy of
ground states on a torus, a quantized Chern number, and a robust spectrum gap.
Moreover, the spectrum for two-quasihole states also shows a finite energy gap,
with the number of states in the lower energy sector satisfying the same
counting rule as the Moore-Read Pfaffian state.Comment: 5 pages, 7 figure
Testing Technicolor Models via Top Quark Pair Production in High Energy Photon Collisions
Pseudo-Goldstone boson contributions to production rates in
technicolor models with and without topcolor at the TeV
photon colliders and hadron colliders are reviewed. For reasonable ranges of
the parameters, the contributions are large enough to be experimentally
observable. Models with topcolor, without topcolor and the MSSM with
can be experimentally distinguished.Comment: Talk given by H.Y. Zhou at the III International Conference on
Hyperons,Charm and Beauty Hadrons,Genova,Italy,June 30-July 3 199
- …