83 research outputs found

    Observation of a bacteriochlorophyll anion radical during the primary charge separation in a reaction center

    Get PDF
    The primary light-induced charge separation in reaction centers of Rhodobacter sphaeroides was investigated with femtosecond time resolution. The absorption changes in the time range 100 fs to 1 ns observed after direct excitation of the primary donor P at 860 nm could only be explained by a kinetic model which uses three time constants. This finding supports the following reaction scheme: (i) the electronically excited primary donor P* decays with a time constant of 3.5 ps and populates a very short-lived intermediate involving a reduced accessory bacteriochlorophyll molecule; (ii) with a time constant of 0.9 ps the electron is transferred to the neighboring bacteriopheophytin molecule; and (iii) from there within 200 ps to the quinone

    Initial electron-transfer in the reaction center from Rhodobacter sphaeroides.

    Get PDF
    The initial electron transfer steps in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides have been investigated by femtosecond time-resolved spectroscopy. The experimental data taken at various wavelengths demonstrate the existence of at least four intermediate states within the first nanosecond. The difference spectra of the intermediates and transient photodichroism data are fully consistent with a sequential four-step model of the primary electron transfer: Light absorption by the special pair P leads to the state P*. From the excited primary donor P*, the electron is transferred within 3.5 +/- 0.4 ps to the accessory bacteriochlorophyll B. State P+B- decays with a time constant of 0.9 +/- 0.3 ps passing the electron to the bacteriopheophytin H. Finally, the electron is transferred from H- to the quinone QA within 220 +/- 40 ps

    Terahertz beats of vibrational modes studied by femtosecond coherent Raman spectroscopy

    Get PDF
    A recently developed femtosecond coherent Raman technique allows the measurement of Fourier transform coherent Raman spectra with high-frequency differences. The simultaneous excitation of different vibrational modes with a broad-band tunable driving force leads to a strong beating of the coherent Raman probe scattering. The high time resolution of the experimental set-up allows one to measure beat frequencies of more than 10 THz with high precision

    Femtosecond depahsing processes of molecular vibrations

    Get PDF

    Femtosecond depahsing processes of molecular vibrations

    Get PDF
    • …
    corecore