72 research outputs found
Investigating APOE, APP-Aβ metabolism genes and Alzheimer’s disease GWAS hits in brain small vessel ischemic disease
Alzheimer’s disease and small vessel ischemic disease frequently co-exist in the aging brain. However, pathogenic links between these 2 disorders are yet to be identified. Therefore we used Taqman genotyping, exome and RNA sequencing to investigate Alzheimer’s disease known pathogenic variants and pathways: APOE ε4 allele, APP-Aβ metabolism and late-onset Alzheimer’s disease main genome-wide association loci (APOE, BIN1, CD33, MS4A6A, CD2AP, PICALM, CLU, CR1, EPHA1, ABCA7) in 96 early-onset small vessel ischemic disease Caucasian patients and 368 elderly neuropathologically proven controls (HEX database) and in a mouse model of cerebral hypoperfusion. Only a minority of patients (29%) carried APOE ε4 allele. We did not detect any pathogenic mutation in APP, PSEN1 and PSEN2 and report a burden of truncating mutations in APP-Aß degradation genes. The single-variant association test identified 3 common variants with a likely protective effect on small vessel ischemic disease (0.54>OR > 0.32, adj. p-value 1, adj. p-val<0.05) together with Apoe, Ms4a cluster and Cd33 during brain hypoperfusion and their overexpression correlated with the ischemic lesion size. Finally, the detection of Aβ oligomers in the hypoperfused hippocampus supported the link between brain ischemia and Alzheimer’s disease pathology
Xq27.1 palindrome mediated interchromosomal insertion likely causes familial congenital bilateral laryngeal abductor paralysis (Plott syndrome)
Bilateral laryngeal abductor paralysis is a rare entity and the second most common cause of stridor in newborns. So far, no conclusive genetic or chromosomal aberration has been reported for X-linked isolated bilateral vocal cord paralysis, also referred to as Plott syndrome. Via whole genome sequencing (WGS), we identified a complex interchromosomal insertion in a large family with seven affected males. The 404 kb inserted fragment originates from chromosome 10q21.3, contains no genes and is inserted inversionally into the intergenic chromosomal region Xq27.1, 82 kb centromeric to the nearest gene SOX3. The patterns found at the breakpoint junctions resemble typical characteristics that arise in replication-based mechanisms with long-distance template switching. Non protein-coding insertions into the same genomic region have been described to result in different phenotypes, indicating that the phenotypic outcome likely depends on the introduction of regulatory elements. In conclusion, our data adds Plott syndrome as another entity, likely caused by the insertion of non-coding DNA into the intergenic chromosomal region Xq27.1. In this regard, we demonstrate the importance of WGS as a powerful diagnostic test in unsolved genetic diseases, as this genomic rearrangement has not been detected by current first-line diagnostic tests, i.e., exome sequencing and chromosomal microarray analysis
Combining callers improves the detection of copy number variants from whole-genome sequencing
Copy Number Variants (CNVs) are deletions, duplications or insertions larger than 50 base pairs. They account for a large percentage of the normal genome variation and play major roles in human pathology. While array-based approaches have long been used to detect them in clinical practice, whole-genome sequencing (WGS) bears the promise to allow concomitant exploration of CNVs and smaller variants. However, accurately calling CNVs from WGS remains a difficult computational task, for which a consensus is still lacking. In this paper, we explore practical calling options to reach the best compromise between sensitivity and sensibility. We show that callers based on different signal (paired-end reads, split reads, coverage depth) yield complementary results. We suggest approaches combining four selected callers (Manta, Delly, ERDS, CNVnator) and a regenotyping tool (SV2), and show that this is applicable in everyday practice in terms of computation time and further interpretation. We demonstrate the superiority of these approaches over array-based Comparative Genomic Hybridization (aCGH), specifically regarding the lack of resolution in breakpoint definition and the detection of potentially relevant CNVs. Finally, we confirm our results on the NA12878 benchmark genome, as well as one clinically validated sample. In conclusion, we suggest that WGS constitutes a timely and economically valid alternative to the combination of aCGH and whole-exome sequencing
GLI3 variants causing isolated polysyndactyly are not restricted to the protein's C-terminal third
Loss of function variants of GLI3 are associated with a variety of forms of polysyndactyly: Pallister-Hall syndrome (PHS), Greig-Cephalopolysyndactyly syndrome (GCPS), and isolated polysyndactyly (IPD). Variants affecting the N-terminal and C-terminal thirds of the GLI3 protein have been associated with GCPS, those within the central third with PHS. Cases of IPD have been attributed to variants affecting the C-terminal third of the GLI3 protein. In this study, we further investigate these genotype-phenotype correlations. Sequencing of GLI3 was performed in patients with clinical findings suggestive of a GLI3-associated syndrome. Additionally, we searched the literature for reported cases of either manifestation with mutations in the GLI3 gene. Here, we report 48 novel cases from 16 families with polysyndactyly in whom we found causative variants in GLI3 and a review on 314 previously reported GLI3 variants. No differences in location of variants causing either GCPS or IPD were found. Review of published data confirmed the association of PHS and variants affecting the GLI3 protein's central third. We conclude that the observed manifestations of GLI3 variants as GCPS or IPD display different phenotypic severities of the same disorder and propose a binary division of GLI3-associated disorders in either PHS or GCPS/polysyndactyly
A novel and well-defined benchmarking method for second generation read mapping
Background Second generation sequencing technologies yield DNA sequence data
at ultra high-throughput. Common to most biological applications is a mapping
of the reads to an almost identical or highly similar reference genome. The
assessment of the quality of read mapping results is not straightforward and
has not been formalized so far. Hence, it has not been easy to compare
different read mapping approaches in a unified way and to determine which
program is the best for what task. Results We present a new benchmark method,
called Rabema (Read Alignment BEnchMArk), for read mappers. It consists of a
strict definition of the read mapping problem and of tools to evaluate the
result of arbitrary read mappers supporting the SAM output format. Conclusions
We show the usefulness of the benchmark program by performing a comparison of
popular read mappers. The tools supporting the benchmark are licensed under
the GPL and available from http://www.seqan.de/projects/rabema.html
VarFish: comprehensive DNA variant analysis for diagnostics and research
VarFish is a user-friendly web application for the quality control, filtering, prioritization, analysis, and user-based annotation of DNA variant data with a focus on rare disease genetics. It is capable of processing variant call files with single or multiple samples. The variants are automatically annotated with population frequencies, molecular impact, and presence in databases such as ClinVar. Further, it provides support for pathogenicity scores including CADD, MutationTaster, and phenotypic similarity scores. Users can filter variants based on these annotations and presumed inheritance pattern and sort the results by these scores. Variants passing the filter are listed with their annotations and many useful link-outs to genome browsers, other gene/variant data portals, and external tools for variant assessment. VarFish allows users to create their own annotations including support for variant assessment following ACMG-AMP guidelines. In close collaboration with medical practitioners, VarFish was designed for variant analysis and prioritization in diagnostic and research settings as described in the software's extensive manual. The user interface has been optimized for supporting these protocols. Users can install VarFish on their own in-house servers where it provides additional lab notebook features for collaborative analysis and allows re-analysis of cases, e.g. after update of genotype or phenotype databases
Genome sequencing in families with congenital limb malformations
The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00439-021-02295-y
PHACTR1 genetic variability is not critical in small vessel ischemic disease patients and PcomA recruitment in C57BL/6J mice
Recently, several genome-wide association studies identified PHACTR1 as key locus for five diverse vascular disorders: coronary artery disease, migraine, fibromuscular dysplasia, cervical artery dissection and hypertension. Although these represent significant risk factors or comorbidities for ischemic stroke, PHACTR1 role in brain small vessel ischemic disease and ischemic stroke most important survival mechanism, such as the recruitment of brain collateral arteries like posterior communicating arteries (PcomAs), remains unknown. Therefore, we applied exome and genome sequencing in a multi-ethnic cohort of 180 early-onset independent familial and apparently sporadic brain small vessel ischemic disease and CADASIL-like Caucasian patients from US, Portugal, Finland, Serbia and Turkey and in 2 C57BL/6J stroke mouse models (bilateral common carotid artery stenosis [BCCAS] and middle cerebral artery occlusion [MCAO]), characterized by different degrees of PcomAs patency. We report 3 very rare coding variants in the small vessel ischemic disease-CADASIL-like cohort (p.Glu198Gln, p.Arg204Gly, p.Val251Leu) and a stop-gain mutation (p.Gln273*) in one MCAO mouse. These coding variants do not cluster in PHACTR1 known pathogenic domains and are not likely to play a critical role in small vessel ischemic disease or brain collateral circulation. We also exclude the possibility that copy number variants (CNVs) or a variant enrichment in Phactr1 may be associated with PcomA recruitment in BCCAS mice or linked to diverse vascular traits (cerebral blood flow pre-surgery, PcomA size, leptomeningeal microcollateral length and junction density during brain hypoperfusion) in C57BL/6J mice, respectively. Genetic variability in PHACTR1 is not likely to be a common susceptibility factor influencing small vessel ischemic disease in patients and PcomA recruitment in C57BL/6J mice. Nonetheless, rare variants in PHACTR1 RPEL domains may influence the stroke outcome and are worth investigating in a larger cohort of small vessel ischemic disease patients, different ischemic stroke subtypes and with functional studies
Expanding the clinical and molecular spectrum of ATP6V1A related metabolic cutis laxa.
Several inborn errors of metabolism show cutis laxa as a highly recognizable feature. One group of these metabolic cutis laxa conditions is autosomal recessive cutis laxa type 2 caused by defects in v-ATPase components or the mitochondrial proline cycle. Besides cutis laxa, muscular hypotonia and cardiac abnormalities are hallmarks of autosomal recessive cutis laxa type 2D (ARCL2D) due to pathogenic variants in ATP6V1A encoding subunit A of the v-ATPase. Here, we report on three affected individuals from two families with ARCL2D in whom we performed whole exome and Sanger sequencing. We performed functional studies in fibroblasts from one individual, summarized all known probands' clinical, molecular, and biochemical features and compared them, also to other metabolic forms of cutis laxa. We identified novel missense and the first nonsense variant strongly affecting ATP6V1A expression. All six ARCL2D affected individuals show equally severe cutis laxa and dysmorphism at birth. While for one no information was available, two died in infancy and three are now adolescents with mild or absent intellectual disability. Muscular weakness, ptosis, contractures, and elevated muscle enzymes indicated a persistent myopathy. In cellular studies, a fragmented Golgi compartment, a delayed Brefeldin A-induced retrograde transport and glycosylation abnormalities were present in fibroblasts from two individuals. This is the second and confirmatory report on pathogenic variants in ATP6V1A as the cause of this extremely rare condition and the first to describe a nonsense allele. Our data highlight the tremendous clinical variability of ATP6V1A related phenotypes even within the same family
- …