2,691 research outputs found

    Phonon Squeezing in a Superconducting Molecular Transistor

    Full text link
    Josephson transport through a single molecule or carbon nanotube is considered in the presence of a local vibrational mode coupled to the electronic charge. The ground-state solution is obtained exactly in the limit of a large superconducting gap, and is extended to the general case by variational analysis. Coherent charge fluctuations are entangled with non-classical phonon states. The Josephson current induces squeezing of the phonon mode, which is controlled by the superconducting phase difference and by the junction asymmetry. Optical probes of non-classical phonon states are briefly discussed

    Distance-depending electron-phonon interactions from one- and two-body electronic terms in a dimer

    Full text link
    For a dimer with a non-degenerate orbital built from atomic wave functions of Gaussian shape we evaluate all the electron-phonon couplings derived from the one-body and two-body electronic interactions, considering both the adiabatic and extreme non-adiabatic limit. Not only the values of the coupling parameters in the two limits, but also the expressions of the corresponding terms in the Hamiltonian differ. Depending on the distance between the dimer ions, some of the two-body couplings are comparable, or even larger than the one-body ones.Comment: 8 pages, 3 figures, to be published in Int. Journal of Modern Physics

    Ground state overlap and quantum phase transitions

    Full text link
    We present a characterization of quantum phase transitions in terms of the the overlap function between two ground states obtained for two different values of external parameters. On the examples of the Dicke and XY models, we show that the regions of criticality of a system are marked by the extremal points of the overlap and functions closely related to it. Further, we discuss the connections between this approach and the Anderson orthogonality catastrophe as well as with the dynamical study of the Loschmidt echo for critical systems.Comment: 5 pages. Version to be published, title change

    Electron-nuclear correlations for photo-induced dynamics in molecular dimers

    Full text link
    Ultrafast photoinduced dynamics of electronic excitation in molecular dimers is drastically affected by the dynamic reorganization of inter- and intra- molecular nuclear configuration modeled by a quantized nuclear degree of freedom [Cina et. al, J. Chem Phys. {118}, 46 (2003)]. The dynamics of the electronic population and nuclear coherence is analyzed by solving the chain of coupled differential equations for %mean coordinate, population inversion, electron-vibrational correlation, etc. [Prezhdo, Pereverzev, J. Chem. Phys. {113} 6557 (2000)]. Intriguing results are obtained in the approximation of a small change of the nuclear equilibrium upon photoexcitation. In the limiting case of resonance between the electronic energy gap and the frequency of the nuclear mode these results are justified by comparison to the exactly solvable Jaynes-Cummings model. It is found that the photoinduced processes in the model dimer are arranged according to their time scales: (i) fast scale of nuclear motion, (ii) intermediate scale of dynamical redistribution of electronic population between excited states as well as growth and dynamics of electron-nuclear correlation, (iii) slow scale of electronic population approach to the quasi-equilibrium distribution, decay of electron-nuclear correlation, and decrease of the amplitude of mean coordinate oscillation. The latter processes are accompanied by a noticeable growth of the nuclear coordinate dispersion associated with the overall nuclear wavepacket width. The demonstrated quantum relaxation features of the photoinduced vibronic dynamics in molecular dimers are obtained by a simple method, applicable to systems with many degrees of freedom

    Polaron self-trapping in a honeycomb net

    Full text link
    Small polaron behavior in a two dimensional honeycomb net is studied by applying the strong coupling perturbative method to the Holstein molecular crystal model. We find that small optical polarons can be mobile also if the electrons are strongly coupled to the lattice. Before the polarons localize and become very heavy, there is infact a window of {\it e-ph} couplings in which the polarons are small and have masses of order ≃5−50\simeq 5 - 50 times the bare band mass according to the value of the adiabaticity parameter. The 2D honeycomb net favors the mobility of small optical polarons in comparison with the square lattice.Comment: 6 pages, 3 figures, to appear in J.Phys.:Condensed Matter {PACS: 63.10.+a, 63.20.Dj, 71.38.+i

    State Responsibility and the Law of International Watercourses

    Get PDF

    State Responsibility and the Law of International Watercourses

    Get PDF

    Quantum phase transition in the multi-mode Dicke model

    Full text link
    An investigation of the quantum phase transition in both discrete and continuum field Dicke models is presented. A series of anticrossing features following the criticality is revealed in the band of the field modes. Critical exponents are calculated. We investigate the properties of a pairwise entanglement measured by a concurrence and obtain analytical results in the thermodynamic limit.Comment: 7 pages, 3 figure

    Model Calculation of Electron-Phonon Couplings in a Dimer with a Non-Degenerate Orbital

    Full text link
    We evaluate all the electron-phonon couplings derived from the one-body electronic interactions, in both the adiabatic and extreme non-adiabatic limit, for a dimer with a non-degenerate orbital built from atomic wave functions of Gaussian shape. We find largely different values of the coupling parameters in the two cases, as well as different expressions of the corresponding terms in the Hamiltonian.Comment: 5 postscript figure
    • …
    corecore