9 research outputs found

    Assessment of a reconfiguration of the InterSpread Plus US national FMD model as a potential tool to analyze a foot-and-mouth disease outbreak on a single large cattle feedlot in the United States

    Get PDF
    IntroductionAn incursion of foot-and-mouth disease (FMD) into the United States remains a concern of high importance and would have devastating socioeconomic impacts to the livestock and associated industries. This highly transmissible and infectious disease poses continual risk for introduction into the United States (US), due to the legal and illegal global movement of people, animals, and animal products. While stamping out has been shown to effectively control FMD, depopulation of large cattle feedlots (>50,000 head) presents a number of challenges for responders due to the resources required to depopulate and dispose of large numbers of animals in a timely and effective manner.MethodsHowever, evaluating alternative strategies for FMD control on large feedlots requires a detailed within-farm modeling approach, which can account for the unique structure of these operations. To address this, we developed a single feedlot, within-farm spread model using a novel configuration within the InterSpread Plus (ISP) framework. As proof of concept we designed six scenarios: (i) depopulation - the complete depopulation of the feedlot, (ii) burn-through – a managed “burn-through” where the virus is allowed to spread through the feedlot and only movement restriction and biosecurity are implemented, (iii) firebreak-NV – targeted depopulation of infected pens and adjacent pens without vaccination; (iv) firebreak - targeted depopulation of infected pens and adjacent pens with vaccination of remaining pens; (v) harvest-NV - selective harvest of pens where a 100% movement restriction is applied for 28-30 days, then pens are set for selection to be sent to slaughter, while allowing a controlled “burn-through” without vaccination; and (vi) harvest - selective harvest of pens with vaccination.ResultsOverall, the burn-through scenario (ii) had the shortest epidemic duration (31d (30, 33)) median (25th, 75th percentiles), while the firebreak scenario (iv) had the longest (47d (38,55)). Additionally, we found that scenarios implementing depopulation delayed the peak day of infection and reduced the total number of pens infected compared to non-depopulation scenarios.DiscussionThis novel configuration of ISP provides proof of concept for further development of this new tool to enhance response planning for an incursion of FMD in the US and provides the capability to investigate response strategies that are designed to address specific outbreak response objectives

    Predicting functional responses in agro-ecosystems from animal movement data to improve management of invasive pests

    Get PDF
    Functional responses describe how changing resource availability affects con- sumer resource use, thus providing a mechanistic approach to prediction of the invasibility and potential damage of invasive alien species (IAS). However, functional responses can be context dependent, varying with resource characteristics and availability, consumer attributes, and environmental variables. Identifying context dependencies can allow invasion and damage risk to be predicted across different ecoregions. Understanding how ecological factors shape the functional response in agro-ecosystems can improve predictions of hotspots of highest impact and inform strategies to mitigate damage across locations with varying crop types and avail- ability. We linked heterogeneous movement data across different agro-ecosystems to predict ecologically driven variability in the functional responses. We applied our approach to wild pigs (Sus scrofa), one of the most successful and detrimental IAS worldwide where agricultural resource depredation is an important driver of spread and establishment. We used continental- scale movement data within agro-ecosystems to quantify the functional response of agricul- tural resources relative to availability of crops and natural forage. We hypothesized that wild pigs would selectively use crops more often when natural forage resources were low. We also examined how individual attributes such as sex, crop type, and resource stimulus such as dis- tance to crops altered the magnitude of the functional response. There was a strong agricul- tural functional response where crop use was an accelerating function of crop availability at low density (Type III) and was highly context dependent. As hypothesized, there was a reduced response of crop use with increasing crop availability when non-agricultural resources were more available, emphasizing that crop damage levels are likely to be highly heterogeneous depending on surrounding natural resources and temporal availability of crops. We found sig- nificant effects of crop type and sex, with males spending 20% more time and visiting crops 58% more often than females, and both sexes showing different functional responses depend- ing on crop type. Our application demonstrates how commonly collected animal movement data can be used to understand context dependencies in resource use to improve our under- standing of pest foraging behavior, with implications for prioritizing spatiotemporal hotspots of potential economic loss in agro-ecosystems

    Predicting functional responses in agro-ecosystems from animal movement data to improve management of invasive pests

    Get PDF
    Functional responses describe how changing resource availability affects con- sumer resource use, thus providing a mechanistic approach to prediction of the invasibility and potential damage of invasive alien species (IAS). However, functional responses can be context dependent, varying with resource characteristics and availability, consumer attributes, and environmental variables. Identifying context dependencies can allow invasion and damage risk to be predicted across different ecoregions. Understanding how ecological factors shape the functional response in agro-ecosystems can improve predictions of hotspots of highest impact and inform strategies to mitigate damage across locations with varying crop types and avail- ability. We linked heterogeneous movement data across different agro-ecosystems to predict ecologically driven variability in the functional responses. We applied our approach to wild pigs (Sus scrofa), one of the most successful and detrimental IAS worldwide where agricultural resource depredation is an important driver of spread and establishment. We used continental- scale movement data within agro-ecosystems to quantify the functional response of agricul- tural resources relative to availability of crops and natural forage. We hypothesized that wild pigs would selectively use crops more often when natural forage resources were low. We also examined how individual attributes such as sex, crop type, and resource stimulus such as dis- tance to crops altered the magnitude of the functional response. There was a strong agricul- tural functional response where crop use was an accelerating function of crop availability at low density (Type III) and was highly context dependent. As hypothesized, there was a reduced response of crop use with increasing crop availability when non-agricultural resources were more available, emphasizing that crop damage levels are likely to be highly heterogeneous depending on surrounding natural resources and temporal availability of crops. We found sig- nificant effects of crop type and sex, with males spending 20% more time and visiting crops 58% more often than females, and both sexes showing different functional responses depend- ing on crop type. Our application demonstrates how commonly collected animal movement data can be used to understand context dependencies in resource use to improve our under- standing of pest foraging behavior, with implications for prioritizing spatiotemporal hotspots of potential economic loss in agro-ecosystems
    corecore