254 research outputs found

    Lines pinning lines

    Full text link
    A line g is a transversal to a family F of convex polytopes in 3-dimensional space if it intersects every member of F. If, in addition, g is an isolated point of the space of line transversals to F, we say that F is a pinning of g. We show that any minimal pinning of a line by convex polytopes such that no face of a polytope is coplanar with the line has size at most eight. If, in addition, the polytopes are disjoint, then it has size at most six. We completely characterize configurations of disjoint polytopes that form minimal pinnings of a line.Comment: 27 pages, 10 figure

    HAMLET forms annular oligomers when deposited with phoshpolipid monolayers

    Get PDF
    Recently, the anticancer activity of human α-lactalbumin made lethal to tumor cells (HAMLET) has been linked to its increased membrane affinity in vitro, at neutral pH, and ability to cause leakage relative to the inactive native bovine α-lactalbumin (BLA) protein. In this study, atomic force microscopy resolved membrane distortions and annular oligomers (AOs) produced by HAMLET when deposited at neutral pH on mica together with a negatively charged lipid monolayer. BLA, BAMLET (HAMLET's bovine counterpart) and membrane-binding Peptide C, corresponding to BLA residues 75–100, also form AO-like structures under these conditions but at higher subphase concentrations than HAMLET. The N-terminal Peptide A, which binds to membranes at acidic but not at neutral pH, did not form AOs. This suggests a correlation between the capacity of the proteins/peptides to integrate into the membrane at neutralpH—as observed by liposome content leakage and circular dichroism experiments—and the formation of AOs, albeit at higher concentrations. Formation of AOs, which might be important to HAMLET's tumor toxic action, appears related to the increased tendency of the protein to populate intermediately folded states compared to the native protein, the formation of which is promoted by, but not uniquely dependent on, the oleic acid molecules associated with HAMLET.publishedVersio

    Health-related quality of life in patients with advanced melanoma treated with ipilimumab: prognostic implications and changes during treatment

    Get PDF
    Background: We have previously reported that the safety and efficacy of ipilimumab in real-world patients with metastatic melanoma were comparable to clinical trials. Few studies have explored health-related quality of life (HRQL) in real-world populations receiving checkpoint inhibitors. This study reports HRQL in real-world patients receiving ipilimumab and assesses the prognostic value of patient-reported outcome measures. Patients and methods: Ipi4 (NCT02068196) was a prospective, multicentre, interventional phase IV trial. Real-world patients (N = 151) with metastatic melanoma were treated with ipilimumab 3 mg/kg intravenously as labelled. HRQL was assessed by the European Organisation of Research and Treatment of Cancer Quality of Life Questionnaire at baseline and after 10-12 weeks. Results: The European Organisation of Research and Treatment of Cancer Quality of Life Questionnaire was completed by 93% (141/151 patients) at baseline, and by 82% at 10-12 weeks. Poor performance status and elevated C-reactive protein (CRP) were associated with worse baseline HRQL. Clinically relevant and statistically significant deteriorations in HRQL from baseline to weeks 10-12 were reported (P <0.05). Baseline physical functioning [hazard ratio (HR) 1.96, P = 0.016], role functioning (HR 2.15, P <0.001), fatigue (HR 1.60, P = 0.030), and appetite loss (HR 1.76, P = 0.012) were associated with poorer overall survival independent of performance status, lactate dehydrogenase (LDH), and CRP. We further developed a prognostic model, combining HRQL outcomes with performance status, LDH, and CRP. This model identified three groups with large and statistically significant differences in survival. Conclusions: Systemic inflammation is associated with impaired HRQL. During treatment with ipilimumab, HRQL deteriorated significantly. Combining HRQL outcomes with objective risk factors provided additional prognostic information that may aid clinical decision making.publishedVersio

    Ipilimumab in a real-world population: A prospective Phase IV trial with long-term follow-up

    Get PDF
    Ipilimumab was the first treatment that improved survival in advanced melanoma. Efficacy and toxicity in a real-world setting may differ from clinical trials, due to more liberal eligibility criteria and less intensive monitoring. Moreover, high costs and lack of biomarkers have raised cost-benefit concerns about ipilimumab in national healthcare systems and limited its use. Here, we report the prospective, interventional study, Ipi4 (NCT02068196), which aimed to investigate the toxicity and efficacy of ipilimumab in a real-world population with advanced melanoma. This national, multicentre, phase IV trial included 151 patients. Patients received ipilimumab 3 mg/kg intravenously and were followed for at least 5 years or until death. Treatment interruption or cessation occurred in 38%, most frequently due to disease progression (19%). Treatment-associated grade 3 to 4 toxicity was observed in 28% of patients, and immune-related toxicity in 56%. The overall response rate was 9%. Median overall survival was 12.1 months (95% CI: 8.3-15.9); and progression-free survival 2.7 months (95% CI: 2.6-2.8). After 5 years, 20% of patients were alive. In a landmark analysis from 6 months, improved survival was associated with objective response (HR 0.16, P = .001) and stable disease (HR 0.49, P = .005) compared to progressive disease. Poor performance status, elevated lactate dehydrogenase and C-reactive protein were identified as biomarkers. This prospective trial represents the longest reported follow-up of a real-world melanoma population treated with ipilimumab. Results indicate safety and efficacy comparable to phase III trials and suggest that the use of ipilimumab can be based on current cost-benefit estimates.publishedVersio

    Lack of influence of the COX inhibitors metamizol and diclofenac on platelet GPIIb/IIIa and P-selectin expression in vitro

    Get PDF
    BACKGROUND: The effect of non-steroidal anti-inflammatory drugs (NSAIDs) for reduced platelet aggregation and thromboxane A(2 )synthesis has been well documented. However, the influence on platelet function is not fully explained. Aim of this study was to examine the influence of the COX-1 inhibiting NSAIDs, diclofenac and metamizol on platelet activation and leukocyte-platelet complexes, in vitro. Surface expression of GPIIb/IIIa and P-selectin on platelets, and the percentage of platelet-leukocyte complexes were investigated. METHODS: Whole blood was incubated with three different concentrations of diclofenac and metamizol for 5 and 30 minutes, followed by activation with TRAP-6 and ADP. Rates of GPIIb/IIIa and P-selectin expression, and the percentage of platelet-leukocyte complexes were analyzed by a flow-cytometric assay. RESULTS: There were no significant differences in the expression of GPIIb/IIIa and P-selectin, and in the formation of platelet-leukocyte complexes after activation with ADP and TRAP-6, regarding both the time of incubation and the concentrations of diclofenac and metamizol. CONCLUSIONS: Accordingly, the inhibitory effect of diclofenac and metamizol on platelet aggregation is not related to a reduced surface expression of P-selectin and GPIIb/IIIa on platelets

    In thrombin stimulated human platelets Citalopram, Promethazine, Risperidone, and Ziprasidone, but not Diazepam, may exert their pharmacological effects also through intercalation in membrane phospholipids in a receptor-independent manner

    Get PDF
    Intercalation of drugs in the platelet membrane affects phospholipid-requiring enzymatic processes according to the drugs’ intercalation capability. We investigated effects of Promethazine, Citalopram, Ziprasidone, Risperidone, and Diazepam on phospholipase A2 (PLA2) and polyphosphoinositide (PPI) metabolism in thrombin-stimulated human platelets. We also examined effects of the drugs on monolayers of glycerophospholipids using the Langmuir technique. Diazepam did not influence PLA2 activity, had no effects on PPI cycle, and caused no change in mean molecular area of phospholipid monolayers. The remaining psychotropic drugs affected these parameters in different ways and levels of potency suggesting that they act by being intercalated between the molecules of adjacent membrane phospholipids, thus causing changes in substrate availability for phospholipid-hydrolyzing enzymes (PLA2 and Phospholipase C). We show that several psychotropic drugs can also have other cellular effects than receptor antagonism. These effects may be implicated in the psychotropic effects of the drugs and/or their side effects

    Receptor Activation and Inositol Lipid Hydrolysis in Neural Tissues

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66228/1/j.1471-4159.1987.tb05618.x.pd

    Loss of estrogen receptor β decreases mitochondrial energetic potential and increases thrombogenicity of platelets in aged female mice

    Get PDF
    Platelets derived from aged (reproductively senescent) female mice with genetic deletion of estrogen receptor beta (βER) are more thrombogenic than those from age-matched wild-type (WT) mice. Intracellular processes contributing to this increased thrombogenicity are not known. Experiments were designed to identify subcellular localization of estrogen receptors and evaluate both glycolytic and mitochondrial energetic processes which might affect platelet activation. Platelets and blood from aged (22–24 months) WT and estrogen receptor β knockout (βERKO) female mice were used in this study. Body, spleen weight, and serum concentrations of follicle-stimulating hormone and 17β-estradiol were comparable between WT and βERKO mice. Number of spontaneous deaths was greater in the βERKO colony (50% compared to 30% in WT) over the course of 24 months. In resting (nonactivated) platelets, estrogen receptors did not appear to colocalize with mitochondria by immunostaining. Lactate production and mitochondrial membrane potential of intact platelets were similar in both groups of mice. However, activities of NADH dehydrogenase, cytochrome bc1 complex, and cytochrome c oxidase of the electron transport chain were reduced in mitochondria isolated from platelets from βERKO compared to WT mice. There were a significantly higher number of phosphatidylserine-expressing platelet-derived microvesicles in the plasma and a greater thrombin-generating capacity in βERKO compared to WT mice. These results suggest that deficiencies in βER affect energy metabolism of platelets resulting in greater production of circulating thrombogenic microvesicles and could potentially explain increased predisposition to thromboembolism in some elderly females

    Systematic review regarding metabolic profiling for improved pathophysiological understanding of disease and outcome prediction in respiratory infections

    Full text link
    corecore