587 research outputs found

    An integrable deformation of the AdS5Ă—S5superstring

    Get PDF
    The S-matrix on the world-sheet theory of the string in AdS5 x S5 has previously been shown to admit a deformation where the symmetry algebra is replaced by the associated quantum group. The case where q is real has been identified as a particular deformation of the Green-Schwarz sigma model. An interpretation of the case with q a root of unity has, until now, been lacking. We show that the Green-Schwarz sigma model admits a discrete deformation which can be viewed as a rather simple deformation of the F/F_V gauged WZW model, where F=PSU(2,2|4). The deformation parameter q is then a k-th root of unity where k is the level. The deformed theory has the same equations-of-motion as the Green-Schwarz sigma model but has a different symplectic structure. We show that the resulting theory is integrable and has just the right amount of kappa-symmetries that appear as a remnant of the fermionic part of the original gauge symmetry. This points to the existence of a fully consistent deformed string background.Comment: 23 pages, improved and expanded discussion of metric and B fiel

    Weak coupling large-N transitions at finite baryon density

    Get PDF
    We study thermodynamics of free SU(N) gauge theory with a large number of colours and flavours on a three-sphere, in the presence of a baryon number chemical potential. Reducing the system to a holomorphic large-N matrix integral, paying specific attention to theories with scalar flavours (squarks), we identify novel third-order deconfining phase transitions as a function of the chemical potential. These transitions in the complex large-N saddle point configurations are interpreted as "melting" of baryons into (s)quarks. They are triggered by the exponentially large (~ exp(N)) degeneracy of light baryon-like states, which include ordinary baryons, adjoint-baryons and baryons made from different spherical harmonics of flavour fields on the three-sphere. The phase diagram of theories with scalar flavours terminates at a phase boundary where baryon number diverges, representing the onset of Bose condensation of squarks.Comment: 38 pages, 7 figure

    Giant magnons of string theory in the lambda background

    Get PDF
    The analogues of giant magnon configurations are studied on the string world sheet in the lambda background. This is a discrete deformation of the AdS(5)xS(5) background that preserves the integrability of the world sheet theory. Giant magnon solutions are generated using the dressing method and their dispersion relation is found. This reduces to the usual dyonic giant magnon dispersion relation in the appropriate limit and becomes relativistic in another limit where the lambda model becomes the generalized sine-Gordon theory of the Pohlmeyer reduction. The scattering of giant magnons is then shown in the semi-classical limit to be described by the quantum S-matrix that is a quantum group deformation of the conventional giant magnon S-matrix. It is further shown that in the small g limit, a sector of the S-matrix is related to the XXZ spin chain whose spectrum matches the spectrum of magnon bound states.Comment: 53 pages, 6 figures, final version to appear in JHE

    One-loop corrections to AdS_5 x S^5 superstring partition function via Pohlmeyer reduction

    Full text link
    We discuss semiclassical expansions around a class of classical string configurations lying in AdS_3 x S^1 using the Pohlmeyer-reduced from of the AdS_5 x S^5 superstring theory. The Pohlmeyer reduction of the AdS_5 x S^5 superstring theory is a gauged Wess-Zumino-Witten model with an integrable potential and two-dimensional fermionic fields. It was recently conjectured that the quantum string partition function is equal to the quantum reduced theory partition function. Continuing the previous paper (arXiv:0906.3800) where arbitrary solutions in AdS_2 x S^2 and homogeneous solutions were considered, we provide explicit demonstration of this conjecture at the one-loop level for several string solutions in AdS_3 x S^1 embedded into AdS_5 x S^5. Quadratic fluctuations derived in the reduced theory for inhomogeneous strings are equivalent to respective fluctuations found from the Nambu action in the original string theory. We also show the equivalence of fluctuation frequencies for homogeneous strings with both the orbital momentum and the winding on a big circle of S^5.Comment: 45 pages, references added, minor correction

    Double Scaling Limits in Gauge Theories and Matrix Models

    Full text link
    We show that N=1\N=1 gauge theories with an adjoint chiral multiplet admit a wide class of large-N double-scaling limits where NN is taken to infinity in a way coordinated with a tuning of the bare superpotential. The tuning is such that the theory is near an Argyres-Douglas-type singularity where a set of non-local dibaryons becomes massless in conjunction with a set of confining strings becoming tensionless. The doubly-scaled theory consists of two decoupled sectors, one whose spectrum and interactions follow the usual large-N scaling whilst the other has light states of fixed mass in the large-N limit which subvert the usual large-N scaling and lead to an interacting theory in the limit. FF-term properties of this interacting sector can be calculated using a Dijkgraaf-Vafa matrix model and in this context the double-scaling limit is precisely the kind investigated in the "old matrix model'' to describe two-dimensional gravity coupled to c<1c<1 conformal field theories. In particular, the old matrix model double-scaling limit describes a sector of a gauge theory with a mass gap and light meson-like composite states, the approximate Goldstone boson of superconformal invariance, with a mass which is fixed in the double-scaling limit. Consequently, the gravitational FF-terms in these cases satisfy the string equation of the KdV hierarchy.Comment: 38 pages, 1 figure, reference adde

    Multi-Instanton Calculus and Equivariant Cohomology

    Get PDF
    We present a systematic derivation of multi-instanton amplitudes in terms of ADHM equivariant cohomology. The results rely on a supersymmetric formulation of the localization formula for equivariant forms. We examine the cases of N=4 and N=2 gauge theories with adjoint and fundamental matter.Comment: 29 pages, one more reference adde

    Glueball operators and the microscopic approach to N=1 gauge theories

    Full text link
    We explain how to generalize Nekrasov's microscopic approach to N=2 gauge theories to the N=1 case, focusing on the typical example of the U(N) theory with one adjoint chiral multiplet X and an arbitrary polynomial tree-level superpotential Tr W(X). We provide a detailed analysis of the generalized glueball operators and a non-perturbative discussion of the Dijkgraaf-Vafa matrix model and of the generalized Konishi anomaly equations. We compute in particular the non-trivial quantum corrections to the Virasoro operators and algebra that generate these equations. We have performed explicit calculations up to two instantons, that involve the next-to-leading order corrections in Nekrasov's Omega-background.Comment: 38 pages, 1 figure and 1 appendix included; v2: typos and the list of references corrected, version to appear in JHE

    Large N gauge theories and topological cigars

    Get PDF
    We analyze the conjectured duality between a class of double-scaling limits of a one-matrix model and the topological twist of non-critical superstring backgrounds that contain the N=2 Kazama-Suzuki SL(2)/U(1) supercoset model. The untwisted backgrounds are holographically dual to double-scaled Little String Theories in four dimensions and to the large N double-scaling limit of certain supersymmetric gauge theories. The matrix model in question is the auxiliary Dijkgraaf-Vafa matrix model that encodes the F-terms of the above supersymmetric gauge theories. We evaluate matrix model loop correlators with the goal of extracting information on the spectrum of operators in the dual non-critical bosonic string. The twisted coset at level one, the topological cigar, is known to be equivalent to the c=1 non-critical string at self-dual radius and to the topological theory on a deformed conifold. The spectrum and wavefunctions of the operators that can be deduced from the matrix model double-scaling limit are consistent with these expectations.Comment: 34 page

    On the shape of a D-brane bound state and its topology change

    Get PDF
    As is well known, coordinates of D-branes are described by NxN matrices. From generic non-commuting matrices, it is difficult to extract physics, for example, the shape of the distribution of positions of D-branes. To overcome this problem, we generalize and elaborate on a simple prescription, first introduced by Hotta, Nishimura and Tsuchiya, which determines the most appropriate gauge to make the separation between diagonal components (D-brane positions) and off-diagonal components. This prescription makes it possible to extract the distribution of D-branes directly from matrices. We verify the power of it by applying it to Monte-Carlo simulations for various lower dimensional Yang-Mills matrix models. In particular, we detect the topology change of the D-brane bound state for a phase transition of a matrix model; the existence of this phase transition is expected from the gauge/gravity duality, and the pattern of the topology change is strikingly similar to the counterpart in the gravity side, the black hole/black string transition. We also propose a criterion, based on the behavior of the off-diagonal components, which determines when our prescription gives a sensible definition of D-brane positions. We provide numerical evidence that our criterion is satisfied for the typical distance between D-branes. For a supersymmetric model, positions of D-branes can be defined even at a shorter distance scale. The behavior of off-diagonal elements found in this analysis gives some support for previous studies of D-brane bound states.Comment: 29 pages, 16 figure
    • …
    corecore