24,881 research outputs found
Behavior of Combined Dielectric-Metallic Systems in a Charged Particle Environment
The charging and discharging characteristics of an electrically isolated solar array segment were studied in order to simulate discharges seen during geomagnetic substorms. A solar array segment was floated while bombarded with monoenergetic electrons at various angles of incidence. The potentials of the array surface and of the interconnects were monitored using Trek voltage probes to maintain electrical isolation. A back plate was capacitively coupled to the array to provide information on the characteristics of the transients accompanying the discharges. Several modes of discharging of the array were observed at relatively low differential and absolute potentials (a few kilovolts). A relatively slow discharge response in the array was observed, discharging over one second with currents of nanoamps. Two types of faster discharges were also seen which lasted a few hundredths of a millisecond and with currents on the order of microamps. Some results indicate an electron emission process associated with the arcs
Electron yields from spacecraft materials
Photoyields and secondary electron emission (SEE) characteristics were determined under UHV conditions for a group of insulating materials used in spacecraft applications. The SEE studies were carried out with a pulsed primary beam while photoyields were obtained with a chopped photon beam from a Kr resonance source with major emission at 123.6 nm. This provides a photon flux close to that of the Lyman alpha in the space environment. Yields per incident photon are obtained relative to those from a freshly evaporated and air oxidized Al surface. Results are presented for Kapton, FEP Teflon, the borosilicate glass covering of a shuttle tile, and spacesuit outer fabric
Dependence of field-aligned electron precipitation on season, altitude and pitch angle
The occurrence of field-aligned 2.3 keV electron precipitation was examined by using data from more than 7500 orbits of the polar-orbiting satellite, OGO-4. The frequency of occurrence of field aligned precipitation was highest at actual pitch angles between 7 and 10 deg, being highest in the winter months, at highest satellite altitudes. Acceleration by a localized parallel electric field established by electrostatic charge layers is proposed to explain particle observations
Is Hyperconjugation Responsible For The Gauche Effect In 1-Fluoropropane And Other 2-Substituted-1-Fluoroethanes?
The energies and geometries of a series of 2-substituted-1-fluoroethanes were computed at the MP2/6-311++G**(6D)//MP2/6-31+G* level of theory for both the maxima and minima of the rotation about the C-C bond. The results did not support the predictions of a hyperconjugative model, that both 1,2-difluoroethane and 1-chloro-2-fluoroethane would strongly prefer a gauche conformation, and that 1-fluoro-2-silylethane would strongly prefer an anti conformation. The existence of competing electrostatic interactions between the fluorine and the substituents at C-2 was indicated by the detailed geometries of the gauche conformers and by the calculated sensitivity of the gauche-anti energy differences to the presence of a polar solvent. However, Fourier analyses of the torsional potential energies were wholly consistent with hyperconjugative electron donation into the C-F sigma* orbital contributing to the conformational preferences of these 1-fluoroethanes. Fourier analyses also showed that hyperconjugation contributes to the small variations in C-C and C-F bond lengths and in fluorine atomic charges that were computed. The torsional potential energies, variations in geometry and atomic charge, and sensitivity to solvent were all in accord with the expected ranking of hyperconjugative electron donating ability of bonds to carbon, C-Si \u3e C-H \u3e C-C \u3e C-Cl \u3e C-F
Oxygen interaction with space-power materials
Data from the space shuttle flights have established that many materials experience relatively rapid degradation when exposed to the low Earth orbit ambient atmosphere, which is predominately atomic oxygen. While much was learned from samples flown on the shuttle, laboratory simulations of the shuttle environment are necessary for a detailed understanding of the various interactions which contribute to the observed degradations. These laboratory experiments are particularly important for predicting the deterioration to be expected for materials aboard orbiting power systems, which will be exposed for long periods of time and could have components operating at very high temperatures. By using a mass spectrometer to synchronously detect molecules emitted from the surface as a result of amplitude modulated oxygen ion bombardment, quantum yields were obtained as a function of ion energy. A technique was developed to obtain preliminary yield data by slowly scanning the mass setting of the mass spectrometer; measurements were extended down to zero modulation frequency; yield data was obtained for the insulating materials (Nomex, Kevlar, and Teflon) used in the construction of electrodynamic tethers; a heated sample holder was constructed to investigate the effect of sample temperature on quantum yields; and the instrumentation was developed to observe the mass spectrometer signal as a function of time during and following bombardment of the sample by a brief (approximately 1 millisecond) pulse of ions
A study of Kapton degradation under simulated shuttle environment
A system was developed which employs a source of low energy oxygen ion to simulate the shuttle low Earth orbit environment. This source, together with diagnostic tools including surface analysis ans mass spectroscopic capability, was used to measure the dependence of ion energy of the oxygen induced CO signals from pyrolytic graphite and Kapton. For graphite the CO signal was examined at energies ranging form 4.5 to 465 eV and for Kapton from 4.5 to 188 eV. While the relative quantum yields inferred from the data are reasonably precise, there are large uncertainties in the absolute yields because of the assumptions necessary to covert the measured signal strengths to quantum yields. These assumptions are discussed in detail
Advanced refractory alloy corrosion loop program quarterly progress report no. 1, quarter ending jul. 15, 1965
Material procurement and quality assurance for advanced refractory alloy corrosion loop progra
Phase-dependent X-ray observations of the beta Lyrae system: No eclipse in the soft band
We report on observations of the eclipsing and interacting binary beta Lyrae
from the Suzaku X-ray telescope. This system involves an early B star embedded
in an optically and geometrically thick disk that is siphoning atmospheric
gases from a less massive late B II companion. Motivated by an unpublished
X-ray spectrum from the Einstein X-ray telescope suggesting unusually hard
emission, we obtained time with Suzaku for pointings at three different phases
within a single orbit. From the XIS detectors, the softer X-ray emission
appears typical of an early-type star. What is surprising is the remarkably
unchanging character of this emission, both in luminosity and in spectral
shape, despite the highly asymmetric geometry of the system. We see no eclipse
effect below 10 keV. The constancy of the soft emission is plausibly related to
the wind of the embedded B star and Thomson scattering of X-rays in the system,
although it might be due to extended shock structures arising near the
accretion disk as a result of the unusually high mass-transfer rate. There is
some evidence from the PIN instrument for hard emission in the 10-60 keV range.
Follow-up observations with the RXTE satellite will confirm this preliminary
detection.Comment: to appear in A&A Letter
Self-sterilization of bodies during outer planet entry
A body encountering the atmosphere of an outer planet is subjected to heat loads which could result in high temperature conditions that render terrestrial organisms on or within the body nonviable. To determine whether an irregularly shaped entering body, consisting of several different materials, would be sterilized during inadvertent entry at high velocity, the thermal response of a typical outer planet spacecraft instrument was studied. The results indicate that the Teflon insulated cable and electronic circuit boards may not experience sterilizing temperatures during a Jupiter, Saturn, or Titan entry. Another conclusion of the study is that small plastic particles entering Saturn from outer space have wider survival corridors than do those at Jupiter
- …
