23 research outputs found

    Effects of Cultivation Conditions on Folate Production by Lactic Acid Bacteria

    Get PDF
    A variety of lactic acid bacteria were screened for their ability to produce folate intracellularly and/or extracellularly. Lactococcus lactis, Streptococcus thermophilus, and Leuconostoc spp. all produced folate, while most Lactobacillus spp., with the exception of Lactobacillus plantarum, were not able to produce folate. Folate production was further investigated in L. lactis as a model organism for metabolic engineering and in S. thermophilus for direct translation to (dairy) applications. For both these two lactic acid bacteria, an inverse relationship was observed between growth rate and folate production. When cultures were grown at inhibitory concentrations of antibiotics or salt or when the bacteria were subjected to low growth rates in chemostat cultures, folate levels in the cultures were increased relative to cell mass and (lactic) acid production. S. thermophilus excreted more folate than L. lactis, presumably as a result of differences in the number of glutamyl residues of the folate produced. In S. thermophilus 5,10-methenyl and 5-formyl tetrahydrofolate were detected as the major folate derivatives, both containing three glutamyl residues, while in L. lactis 5,10-methenyl and 10-formyl tetrahydrofolate were found, both with either four, five, or six glutamyl residues. Excretion of folate was stimulated at lower pH in S. thermophilus, but pH had no effect on folate excretion by L. lactis. Finally, several environmental parameters that influence folate production in these lactic acid bacteria were observed; high external pH increased folate production and the addition of p-aminobenzoic acid stimulated folate production, while high tyrosine concentrations led to decreased folate biosynthesis

    Temperature-dependent changes in respiration rates and redox poise of the ubiquinone pool in protoplasts and isolated mitochondria of potato leaves

    No full text
    In many environments, leaves experience large diurnal variations in temperature. Such short-term changes in temperature are likely to have important implications for respiratory metabolism in leaves. Here, we used intact leaf, protoplasts and isolated mitochondria to determine the impact of short-term changes in temperature on respiration rates (R), adenylate concentrations and the redox poise of the ubiquinone (UQ) pool in mitochondria of potato leaves. The Q10 (i.e. proportional change in R for each 10°C rise in temperature) of respiration was 1.8, both for intact leaves and protoplasts. In protoplasts, the redox poise of the extracted UQ pool (UQR/UQT) increased from 0.33 at 22°C, to 0.76 at 15°C. Further decreases in temperature (from 15 to 5°C) resulted in UQR/UQT decreasing to 0.40. Adenylate ratios in protoplasts were also temperature dependent. At high adenosine 5′-triphosphate (ATP) adenosine 5′-diphosphate (ADP) ratios (i.e. low ADP concentrations), UQR/UQT values were low, suggesting that adenylates restricted flux via the UQ-reducing pathways more than they restricted flux via pathways that oxidized UQH2. To assess whether high rates of alternative oxidase (AOX) activity could have uncoupled respiratory flux (and thus UQR/UQT) from adenylate restriction of the cytochrome (Cyt) pathway, we constructed kinetic curves of O2 uptake (via the two pathways) vs UQR/UQT in isolated mitochondria, measured at two temperatures (15 and 25°C); measurements were made for mitochondria operating under state 3 (i.e. +ADP) and state 4 (i.e. -ADP) conditions. In contrast to the Cyt pathway, flux via the AOX was temperature insensitive, with maximal rates of AOX activity representing 21-57% of total O2 uptake in isolated mitochondria. We conclude that temperature-dependent variations in UQR/UQT are largely dependent on temperature-dependent changes in adenylate ratios, and that flux via the AOX could in some circumstances help reduce maximal UQ values

    Overproduction of Heterologous Mannitol 1-Phosphatase: a Key Factor for Engineering Mannitol Production by Lactococcus lactis

    Get PDF
    To achieve high mannitol production by Lactococcus lactis, the mannitol 1-phosphatase gene of Eimeria tenella and the mannitol 1-phosphate dehydrogenase gene mtlD of Lactobacillus plantarum were cloned in the nisin-dependent L. lactis NICE overexpression system. As predicted by a kinetic L. lactis glycolysis model, increase in mannitol 1-phosphate dehydrogenase and mannitol 1-phosphatase activities resulted in increased mannitol production. Overexpression of both genes in growing cells resulted in glucose-mannitol conversions of 11, 21, and 27% by the L. lactis parental strain, a strain with reduced phosphofructokinase activity, and a lactate dehydrogenase-deficient strain, respectively. Improved induction conditions and increased substrate concentrations resulted in an even higher glucose-to-mannitol conversion of 50% by the lactate dehydrogenase-deficient L. lactis strain, close to the theoretical mannitol yield of 67%. Moreover, a clear correlation between mannitol 1-phosphatase activity and mannitol production was shown, demonstrating the usefulness of this metabolic engineering approach
    corecore