2,830 research outputs found

    Hadronic B Decays to Charmless Final States and to J/psi K*

    Get PDF
    Preliminary results from the BABAR experiment on charmless B decays to charged pions or kaons, and the measurement of the B -> J/psi K* decay amplitudes are presented. The data sample, collected at the asymmetric-energy B-factory PEP-II at SLAC, comprises a total number of 22.7 million Y(4S) decays, corresponding to an integrated on-resonance luminosity of approximately 21 fb-1. We measure the following CP-averaged branching fractions: BR(B -> pi+pi-) = (4.1 +- 1.0(stat) +- 0.7(sys))xE-6 BR(B -> K+pi-) = (16.7 +- 1.6(stat) +1.2-1.7(sys))xE-6 and an upper limit of BR(B -> K+K-) < 2.5xE-6, at 90% confidence limit. The measurement of the J/psi K* decay amplitudes results in R_\perp = 0.160 +- 0.032(stat) +- 0.036(sys), and reveals a dominant longitudinal component. The phase of the longitudinal amplitude shows evidence for non-vanishing final state interaction.Comment: 13 pages, 8 postscript figures, submitted to Proceedings for BCP

    Reply to: ''Improved Determination of the CKM Angle alpha from B -> pipi decays''

    Full text link
    In reply to hep-ph/0701204 we demonstrate why the arguments made therein do not address the criticism exposed in hep-ph/0607246 on the fundamental shortcomings of the Bayesian approach when it comes to the extraction of parameters of Nature from experimental data. As for the isospin analysis and the CKM angle alpha it is shown that the use of uniform priors for the observed quantities in the Explicit Solution parametrization is equivalent to a frequentist construction resulting from a change of variables, and thus relies neither on prior PDFs nor on Bayes' theorem. This procedure provides in this particular case results that are similar to the Confidence Level approach, but the treatment of mirror solutions remains incorrect and it is far from being general. In a second part it is shown that important differences subsist between the Bayesian and frequentist approaches, when following the proposal of hep-ph/0701204 and inserting additional information on the hadronic amplitudes beyond isospin invariance. In particular the frequentist result preserves the exact degeneracy that is expected from the remaining symmetries of the problem while the Bayesian procedure does not. Moreover, in the Bayesian approach reducing inference to the 68% or 95% credible interval is a misconception of the meaning of the posterior PDF, which in turn implies that the significant dependence of the latter to the chosen parametrization cannot be viewed as a minor effect, contrary to the claim in hep-ph/0701204.Comment: 5 pages, 1 figure. Fig. 1 corrected (wrong file

    Improved Determination of alpha_QED(M_Z^2) and the Anomalous Magnetic Moment of the Muon

    Full text link
    We reevaluate the hadronic contribution to the running of the QED fine structure constant alpha(s) at s = M_Z^2. We use data from e+e- annihilation and tau decays at low energy and at the qq-bar thresholds, where resonances occur. Using so-called spectral moments and the Operator Product Expansion (OPE), it is shown that a reliable theoretical prediction of the hadronic production rate R(s) is available at relatively low energies. Its application improves significantly the precision on the hadronic vacuum polarization contribution. We obtain delta_alpha^had = (277.8 +/- 2.6) x 10^-4 yielding alpha^-1(M_Z^2) = 128.923 +/- 0.036$. Inserting this value in a global electroweak fit using current experimental input, we constrain the mass of the Standard Model Higgs boson to be M_Higgs = (129 +103 -62) GeV. Analogously, we improve the precision of the hadronic contribution to the anomalous magnetic moment of the muon for which we obtain a_mu^had = (695.1 +/- 7.5) x 10^-10.Comment: tex, 18 pages and 3 figure

    Stau as the Lightest Supersymmetric Particle in R-Parity Violating SUSY Models: Discovery Potential with Early LHC Data

    Full text link
    We investigate the discovery potential of the LHC experiments for R-parity violating supersymmetric models with a stau as the lightest supersymmetric particle (LSP) in the framework of minimal supergravity. We classify the final states according to their phenomenology for different R-parity violating decays of the LSP. We then develop event selection cuts for a specific benchmark scenario with promising signatures for the first beyond the Standard Model discoveries at the LHC. For the first time in this model, we perform a detailed signal over background analysis. We use fast detector simulations to estimate the discovery significance taking the most important Standard Model backgrounds into account. Assuming an integrated luminosity of 1 inverse femtobarn at a center-of-mass energy of 7 TeV, we perform scans in the parameter space around the benchmark scenario we consider. We then study the feasibility to estimate the mass of the stau-LSP. We briefly discuss difficulties, which arise in the identification of hadronic tau decays due to small tau momenta and large particle multiplicities in our scenarios.Comment: 26 pages, 18 figures, LaTeX; minor changes, final version published in PR

    Weak Phase gamma Using Isospin Analysis and Time Dependent Asymmetry in B_d -> K_s pi^+ pi^-

    Full text link
    We present a method for measuring the weak phase gamma using isospin analysis of three body B decays into K pi pi channels. Differential decay widths and time dependent asymmetry in B_d -> K_s pi^+pi^- mode needs to be measured into even isospin pi pi states. The method can be used to extract gamma, as well as, the size of the electroweak penguin contributions. The technique is free from assumptions like SU(3) or neglect of any contributions to the decay amplitudes. By studying different regions of the Dalitz plot, it is possible to reduce the ambiguity in the value of gamma.Comment: 11 pages, 1 figur

    The global electroweak fit at NNLO and prospects for the LHC and ILC

    Get PDF
    For a long time, global fits of the electroweak sector of the Standard Model (SM) have been used to exploit measurements of electroweak precision observables at lepton colliders (LEP, SLC), together with measurements at hadron colliders (Tevatron, LHC), and accurate theoretical predictions at multi-loop level, to constrain free parameters of the SM, such as the Higgs and top masses. Today, all fundamental SM parameters entering these fits are experimentally determined, including information on the Higgs couplings, and the global fits are used as powerful tools to assess the validity of the theory and to constrain scenarios for new physics. Future measurements at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) promise to improve the experimental precision of key observables used in the fits. This paper presents updated electroweak fit results using newest NNLO theoretical predictions, and prospects for the LHC and ILC. The impact of experimental and theoretical uncertainties is analysed in detail. We compare constraints from the electroweak fit on the Higgs couplings with direct LHC measurements, and examine present and future prospects of these constraints using a model with modified couplings of the Higgs boson to fermions and bosons.Comment: 26 pages, 9 figure

    A population-based approach to background discrimination in particle physics

    Full text link
    Background properties in experimental particle physics are typically estimated using control samples corresponding to large numbers of events. This can provide precise knowledge of average background distributions, but typically does not consider the effect of fluctuations in a data set of interest. A novel approach based on mixture model decomposition is presented as a way to estimate the effect of fluctuations on the shapes of probability distributions in a given data set, with a view to improving on the knowledge of background distributions obtained from control samples. Events are treated as heterogeneous populations comprising particles originating from different processes, and individual particles are mapped to a process of interest on a probabilistic basis. The proposed approach makes it possible to extract from the data information about the effect of fluctuations that would otherwise be lost using traditional methods based on high-statistics control samples. A feasibility study on Monte Carlo is presented, together with a comparison with existing techniques. Finally, the prospects for the development of tools for intensive offline analysis of individual events at the Large Hadron Collider are discussed.Comment: Updated according to the version published in J. Phys.: Conf. Ser. Minor changes have been made to the text with respect to the published article with a view to improving readabilit

    Catalyst nanoparticle growth dynamics and their influence on product morphology in a CVD process for continuous carbon nanotube synthesis

    Get PDF
    Extrapolating the properties of individual CNTs into macro-scale CNT materials using a continuous and cost effective process offers enormous potential for a variety of applications. The floating catalyst chemical vapor deposition (FCCVD) method discussed in this paper bridges the gap between generating nano- and macro-scale CNT material and has already been adopted by industry for exploitation. A deep understanding of the phenomena occurring within the FCCVD reactor is thereby key to producing the desired CNT product and successfully scaling up the process further. This paper correlates information on decomposition of reactants, axial catalyst nanoparticle dynamics and the morphology of the resultant CNTs and shows how these are strongly related to the temperature and chemical availability within the reactor. For the first time, in-situ measurements of catalyst particle size distributions coupled with reactant decomposition profiles and a detailed axial SEM study of formed CNT materials reveal specific domains that have important implications for scale-up. A novel observation is the formation, disappearance and reformation of catalyst nanoparticles along the reactor axis, caused by their evaporation and re-condensation and mapping of different CNT morphologies as a result of this process.The authors thank Qflo Ltd for providing funding towards this research, C. Hoecker additionally thanks Churchill College Cambridge for financial support, M. Bajada gratefully acknowledges financial support through the 'Master it! Scholarship Scheme'.This is the accepted manuscript. The final version is available at http://dx.doi.org/10.1016/j.carbon.2015.09.05
    corecore