120 research outputs found

    Urbanization Impacts on Land Snail Community Composition

    Get PDF
    Urbanization has tremendous impacts on most native species. Urban ecosystems are becoming increasingly prevalent, while urban ecology is a relatively underdeveloped field. This is especially true for terrestrial mollusks, which are a surprisingly understudied organism. Due to their low mobility and dispersal potential, land snails are valuable indicators of ecosystem disturbance. For this study, land snails were collected in 54 city parks along an urban gradient to understand influences of urbanization on snail communities. Sampled parks include small extensively landscaped downtown parks, neighborhood and community parks, district parks, and large nature parks, each with variable vegetation, soil characteristics, disturbance regimes, and human activities. Sampling recovered 12,153 individual snails, representing 20 families, 43 genera, and 95 species. Seven new Tennessee state and 87 new county occurrences were recorded for Davidson, Knox, Hamilton, and Marion counties. Five non-native and one extra-limital invasive species were found, four of which are new Tennessee state records. Results show that urbanization greatly alters land snail community structure. Nature and district parks have significantly greater species richness, species diversity and species evenness than community, neighborhood, and downtown parks. Degradation of parks, distance from the park to the city center and percent of coarse woody debris explained most of the variation between park types. Non-metric multidimensional scaling shows that downtown snail communities are similar across all three cities, whereas snail communities in nature parks are distinct. This suggests that urbanization promotes homogenization among land snail communities in Tennessee

    Effects of an electronic topological transition for anisotropic low-dimensional superconductors

    Full text link
    We study the superconducting properties of a two-dimensional superconductor in the proximity to an electronic topological transition (ETT). In contrast to the 3D case, we find that the superconducting gap at T=0, the critical temperature Tc, and the impurity scattering rate are characterized by a nonmonotonic behavior, with maxima occurring close to the ETT. We derive analytical expressions for the value of such maxima both in the s-wave and in the d-wave case. Such expressions are in good qualitative agreement with the phenomenological trend recently observed for Tc^max as a function of the hopping ratio t'/t across several cuprate compounds. We further analyze the effect of an ETT on the Ginzburg-Landau stiffness eta. Instead of vanishing at the ETT, as could be expected, thus giving rise to an increase of the fluctuation effects, in the case of momentum-independent electron-electron interaction, we find eta different from 0, as a result of an integration over the whole Fermi surface.Comment: to be published in Phys. Rev.

    ARPES: A probe of electronic correlations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancini, Springer Series in Solid-State Sciences (2013). A high-resolution version can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf. arXiv admin note: text overlap with arXiv:cond-mat/0307085, arXiv:cond-mat/020850

    The genetics and neuropathology of frontotemporal lobar degeneration

    Get PDF
    Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of disorders characterized by disturbances of behavior and personality and different types of language impairment with or without concomitant features of motor neuron disease or parkinsonism. FTLD is characterized by atrophy of the frontal and anterior temporal brain lobes. Detailed neuropathological studies have elicited proteinopathies defined by inclusions of hyperphosphorylated microtubule-associated protein tau, TAR DNA-binding protein TDP-43, fused-in-sarcoma or yet unidentified proteins in affected brain regions. Rather than the type of proteinopathy, the site of neurodegeneration correlates relatively well with the clinical presentation of FTLD. Molecular genetic studies identified five disease genes, of which the gene encoding the tau protein (MAPT), the growth factor precursor gene granulin (GRN), and C9orf72 with unknown function are most frequently mutated. Rare mutations were also identified in the genes encoding valosin-containing protein (VCP) and charged multivesicular body protein 2B (CHMP2B). These genes are good markers to distinguish underlying neuropathological phenotypes. Due to the complex landscape of FTLD diseases, combined characterization of clinical, imaging, biological and genetic biomarkers is essential to establish a detailed diagnosis. Although major progress has been made in FTLD research in recent years, further studies are needed to completely map out and correlate the clinical, pathological and genetic entities, and to understand the underlying disease mechanisms. In this review, we summarize the current state of the rapidly progressing field of genetic, neuropathological and clinical research of this intriguing condition

    Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia

    Get PDF

    Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD

    Get PDF
    Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e − 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e − 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e − 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis

    Genetic risk for neurodegenerative disorders, and its overlap with cognitive ability and physical function

    Get PDF

    Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis

    Get PDF

    Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes

    Get PDF
    corecore