9,022 research outputs found
Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry
Copyright @ 2010 IOP Publishing Ltd. The conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26th‐30th April, 2010.We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared
Challenges in using GPUs for the real-time reconstruction of digital hologram images
This is the pre-print version of the final published paper that is available from the link below.In-line holography has recently made the transition from silver-halide based recording media, with laser reconstruction, to recording with large-area pixel detectors and computer-based reconstruction. This form of holographic imaging is an established technique for the study of fine particulates, such as cloud or fuel droplets, marine plankton and alluvial sediments, and enables a true 3D object field to be recorded at high resolution over a considerable depth.
The move to digital holography promises rapid, if not instantaneous, feedback as it avoids the need for the time-consuming chemical development of plates or film film and a dedicated replay system, but with the growing use of video-rate holographic recording, and the desire to reconstruct fully every frame, the computational challenge becomes considerable. To replay a digital hologram a 2D FFT must be calculated for every depth slice desired in the replayed image volume. A typical hologram of ~100 μm particles over a depth of a few hundred millimetres will require O(10^3) 2D FFT operations to be performed on a hologram of typically a few million pixels.
In this paper we discuss the technical challenges in converting our existing reconstruction code to make efficient use of NVIDIA CUDA-based GPU cards and show how near real-time video slice reconstruction can be obtained with holograms as large as 4096 by 4096 pixels. Our performance to date for a number of different NVIDIA GPU running under both Linux and Microsoft Windows is presented. The recent availability of GPU on portable computers is discussed and a new code for interactive replay of digital holograms is presented
Use of the MultiNest algorithm for gravitational wave data analysis
We describe an application of the MultiNest algorithm to gravitational wave
data analysis. MultiNest is a multimodal nested sampling algorithm designed to
efficiently evaluate the Bayesian evidence and return posterior probability
densities for likelihood surfaces containing multiple secondary modes. The
algorithm employs a set of live points which are updated by partitioning the
set into multiple overlapping ellipsoids and sampling uniformly from within
them. This set of live points climbs up the likelihood surface through nested
iso-likelihood contours and the evidence and posterior distributions can be
recovered from the point set evolution. The algorithm is model-independent in
the sense that the specific problem being tackled enters only through the
likelihood computation, and does not change how the live point set is updated.
In this paper, we consider the use of the algorithm for gravitational wave data
analysis by searching a simulated LISA data set containing two non-spinning
supermassive black hole binary signals. The algorithm is able to rapidly
identify all the modes of the solution and recover the true parameters of the
sources to high precision.Comment: 18 pages, 4 figures, submitted to Class. Quantum Grav; v2 includes
various changes in light of referee's comment
The impact of priors and observables on parameter inferences in the Constrained MSSM
We use a newly released version of the SuperBayeS code to analyze the impact
of the choice of priors and the influence of various constraints on the
statistical conclusions for the preferred values of the parameters of the
Constrained MSSM. We assess the effect in a Bayesian framework and compare it
with an alternative likelihood-based measure of a profile likelihood. We employ
a new scanning algorithm (MultiNest) which increases the computational
efficiency by a factor ~200 with respect to previously used techniques. We
demonstrate that the currently available data are not yet sufficiently
constraining to allow one to determine the preferred values of CMSSM parameters
in a way that is completely independent of the choice of priors and statistical
measures. While b->s gamma generally favors large m_0, this is in some contrast
with the preference for low values of m_0 and m_1/2 that is almost entirely a
consequence of a combination of prior effects and a single constraint coming
from the anomalous magnetic moment of the muon, which remains somewhat
controversial. Using an information-theoretical measure, we find that the
cosmological dark matter abundance determination provides at least 80% of the
total constraining power of all available observables. Despite the remaining
uncertainties, prospects for direct detection in the CMSSM remain excellent,
with the spin-independent neutralino-proton cross section almost guaranteed
above sigma_SI ~ 10^{-10} pb, independently of the choice of priors or
statistics. Likewise, gluino and lightest Higgs discovery at the LHC remain
highly encouraging. While in this work we have used the CMSSM as particle
physics model, our formalism and scanning technique can be readily applied to a
wider class of models with several free parameters.Comment: Minor changes, extended discussion of profile likelihood. Matches
JHEP accepted version. SuperBayeS code with MultiNest algorithm available at
http://www.superbayes.or
Mosaicking with cosmic microwave background interferometers
Measurements of cosmic microwave background (CMB) anisotropies by
interferometers offer several advantages over single-dish observations. The
formalism for analyzing interferometer CMB data is well developed in the
flat-sky approximation, valid for small fields of view. As the area of sky is
increased to obtain finer spectral resolution, this approximation needs to be
relaxed. We extend the formalism for CMB interferometry, including both
temperature and polarization, to mosaics of observations covering arbitrarily
large areas of the sky, with each individual pointing lying within the flat-sky
approximation. We present a method for computing the correlation between
visibilities with arbitrary pointing centers and baselines and illustrate the
effects of sky curvature on the l-space resolution that can be obtained from a
mosaic.Comment: 9 pages; submitted to Ap
Systematic Errors in Cosmic Microwave Background Interferometry
Cosmic microwave background (CMB) polarization observations will require
superb control of systematic errors in order to achieve their full scientific
potential, particularly in the case of attempts to detect the B modes that may
provide a window on inflation. Interferometry may be a promising way to achieve
these goals. This paper presents a formalism for characterizing the effects of
a variety of systematic errors on interferometric CMB polarization
observations, with particular emphasis on estimates of the B-mode power
spectrum. The most severe errors are those that couple the temperature
anisotropy signal to polarization; such errors include cross-talk within
detectors, misalignment of polarizers, and cross-polarization. In a B mode
experiment, the next most serious category of errors are those that mix E and B
modes, such as gain fluctuations, pointing errors, and beam shape errors. The
paper also indicates which sources of error may cause circular polarization
(e.g., from foregrounds) to contaminate the cosmologically interesting linear
polarization channels, and conversely whether monitoring of the circular
polarization channels may yield useful information about the errors themselves.
For all the sources of error considered, estimates of the level of control that
will be required for both E and B mode experiments are provided. Both
experiments that interfere linear polarizations and those that interfere
circular polarizations are considered. The fact that circular experiments
simultaneously measure both linear polarization Stokes parameters in each
baseline mitigates some sources of error.Comment: 19 pages, 9 figures, submitted to Phys. Rev.
- …