70 research outputs found
Cosmopolitan Sentiment: Motivating Global Justice
This thesis examines the motivational deficit facing duties falling on individuals in affluent countries to act to address global poverty, and develops a novel dialogic sentimental cosmopolitan answer. The argument begins by drawing a distinction between charitable and political accounts of duties to address global poverty. Chapter one defends a focus on a political account of these duties as necessary to achieve long-term solutions to global poverty, and argues that there are independent normative reasons to favour a political approach. Chapter two examines, and rejects, the nudge solution (Thaler and Sunstein, 2009) to the motivational deficit facing duties to address global poverty. This strategy, deriving from behavioural economics, argues that, rather than seeking to alter attitudes, motivational failures can be addressed through prompting unreflective changes in behaviour. I argue that in order to motivate sustained political action to address global poverty a broader change in attitudes is required. Chapter three moves on to examine the sentimental cosmopolitan suggestion that we can motivate action to address global poverty through a process of ‘sentimental education’, in which sympathetic portrayals of distant others in the media and narrative art serve to cultivate greater affective attachments to these others (Nussbaum, 2001; Rorty, 1998). I argue that, although promising, motivating long-term compliance with political duties to address global poverty requires moving beyond the models of sentimental education currently on offer.
In order to begin to develop an alternative account of sentimental education suitable for motivating compliance with political duties to address global poverty, chapter four examines the focus on empathy within the sentimental cosmopolitan approach, arguing that the sentimental cosmopolitan project ought to be broadened to include the cultivation of a number cosmopolitan emotions – especially anger and shame. Chapter five offers an in depth analysis of the mechanisms through which strategies of sentimental education are thought to function to increase affective concern for individuals facing poverty globally. Here, I reject strategies that emphasise the suffering and vulnerability of individuals facing global poverty as a means to increase affective concern. I
argue that these strategies serve to portray individuals facing poverty globally in a manner that obscures their capacity for agency, leading to a number of adverse motivational effects. Attention to our shared vulnerability to suffering as a means to overcome these adverse motivational effects is examined, but ultimately rejected. The final section of this chapter argues that rather than seeking to present distant others in a certain way, strategies of sentimental education ought to proceed by facilitating interactions, and, where this is not feasible, allowing individuals to take the lead in determining how they are presented. In doing so, distant others take an active role in cosmopolitan sentimental education, and are encountered as agents.
Chapter six examines a pressing barrier thought to face the extension of affective concern to distant others, injustice within one’s own political community (Straehle, 2016). This chapter examines the potential conflict between motivating support for justice within national borders, and support for basic global justice. I argue that at the level of motivation the two projects are interrelated in a number of complex ways, making them potentially complementary, rather than competing projects.
Drawing on the arguments advanced in the rest of the thesis, chapter seven develops a positive account of sentimental education suitable for motivating political action to address global poverty. Moving beyond the unidirectional models of sentimental education advocated by previous sentimental cosmopolitan accounts, this chapter developed a novel dialogic model of sentimental education, realised through processes of sensitive mediation, that aims to establish two-way ties between individuals in more affluent countries and particular individuals and groups facing poverty globally. As dialogue between individuals in more affluent countries and groups and individuals facing poverty globally faces a number of practical obstacles, dialogue operates here as a guiding ideal rather than a requirement. Finally, through the use of detailed examples this chapter demonstrates that the solution to the motivational deficit facing political duties to address global poverty advanced in this thesis is not only practically feasible, it is a reality in action
COMAP Early Science: VIII. A Joint Stacking Analysis with eBOSS Quasars
We present a new upper limit on the cosmic molecular gas density at z = 2.4 − 3.4 obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 243 quasars selected from the Extended Baryon Oscillation SpectroscopicSurvey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1-0) line emission of 0.129 Jykm/s. Depending on the balance of the emission between the quasar host and its environment, this value can be interpreted as an average CO line luminosity L′CO of eBOSS quasars of ≤ 1.26 × 1011 K km pc2s−1, or an average molecular gas density ρH2 in regions of the universe containing a quasar of ≤ 1.52 × 108 M⊙ cMpc−3. The L′ CO upper limit falls among CO line luminosities obtained fromindividually-targeted quasars in the COMAP redshift range, and the ρH2 value is comparable to upper limits obtained from other Line Intensity Mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5-year COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on the achieved sensitivity, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both asa technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data
COMAP Early Science: VIII. A Joint Stacking Analysis with eBOSS Quasars
We present a new upper limit on the cosmic molecular gas density at
obtained using the first year of observations from the CO Mapping
Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 282
quasars selected from the Extended Baryon Oscillation Spectroscopic Survey
(eBOSS) catalog, yielding a 95% upper limit for flux from CO(1-0) line emission
of 0.210 Jy km/s. Depending on the assumptions made, this value can be
interpreted as either an average CO line luminosity of eBOSS
quasars of K km pc s, or an average
molecular gas density in regions of the universe containing
a quasar of M cMpc. The
upper limit falls among CO line luminosities obtained from
individually-targeted quasars in the COMAP redshift range, and the
value is comparable to upper limits obtained from other
Line Intensity Mapping (LIM) surveys and their joint analyses. Further, we
forecast the values obtainable with the COMAP/eBOSS stack after the full 5-year
COMAP Pathfinder survey. We predict that a detection is probable with this
method, depending on the CO properties of the quasar sample. Based on these
achieved sensitivities, we believe that this technique of stacking LIM data on
the positions of traditional galaxy or quasar catalogs is extremely promising,
both as a technique for investigating large galaxy catalogs efficiently at high
redshift and as a technique for bolstering the sensitivity of LIM experiments,
even with a fraction of their total expected survey data.Comment: 15 pages, 8 figures. To be submitted to Ap
COMAP Early Science: III. CO Data Processing
We describe the first season COMAP analysis pipeline that converts raw
detector readouts to calibrated sky maps. This pipeline implements four main
steps: gain calibration, filtering, data selection, and map-making. Absolute
gain calibration relies on a combination of instrumental and astrophysical
sources, while relative gain calibration exploits real-time total-power
variations. High efficiency filtering is achieved through spectroscopic
common-mode rejection within and across receivers, resulting in nearly
uncorrelated white noise within single-frequency channels. Consequently,
near-optimal but biased maps are produced by binning the filtered time stream
into pixelized maps; the corresponding signal bias transfer function is
estimated through simulations. Data selection is performed automatically
through a series of goodness-of-fit statistics, including and
multi-scale correlation tests. Applying this pipeline to the first-season COMAP
data, we produce a dataset with very low levels of correlated noise. We find
that one of our two scanning strategies (the Lissajous type) is sensitive to
residual instrumental systematics. As a result, we no longer use this type of
scan and exclude data taken this way from our Season 1 power spectrum
estimates. We perform a careful analysis of our data processing and observing
efficiencies and take account of planned improvements to estimate our future
performance. Power spectrum results derived from the first-season COMAP maps
are presented and discussed in companion papers.Comment: Paper 3 of 7 in series. 26 pages, 23 figures, submitted to Ap
COMAP Early Science: VI. A First Look at the COMAP Galactic Plane Survey
We present early results from the COMAP Galactic Plane Survey conducted
between June 2019 and April 2021, spanning in Galactic
longitude and |b|<1.\!\!^{\circ}5 in Galactic latitude with an angular
resolution of . The full survey will span -
and will be the first large-scale radio continuum survey at
GHz with sub-degree resolution. We present initial results from the first part
of the survey, including diffuse emission and spectral energy distributions
(SEDs) of HII regions and supernova remnants. Using low and high frequency
surveys to constrain free-free and thermal dust emission contributions, we find
evidence of excess flux density at GHz in six regions that we interpret
as anomalous microwave emission. Furthermore we model UCHII contributions using
data from the GHz CORNISH catalogue and reject this as the cause of the
GHz excess. Six known supernova remnants (SNR) are detected at GHz,
and we measure spectral indices consistent with the literature or show evidence
of steepening. The flux density of the SNR W44 at GHz is consistent with
a power-law extrapolation from lower frequencies with no indication of spectral
steepening in contrast with recent results from the Sardinia Radio Telescope.
We also extract five hydrogen radio recombination lines to map the warm ionized
gas, which can be used to estimate electron temperatures or to constrain
continuum free-free emission. The full COMAP Galactic plane survey, to be
released in 2023/2024, will be an invaluable resource for Galactic
astrophysics.Comment: Paper 6 of 7 in series. 28 pages, 10 figures, submitted to Ap
COMAP Early Science: IV. Power Spectrum Methodology and Results
We present the power spectrum methodology used for the first-season COMAP
analysis, and assess the quality of the current data set. The main results are
derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a
robust estimator with respect to both noise modeling errors and experimental
systematics. We use effective transfer functions to take into account the
effects of instrumental beam smoothing and various filter operations applied
during the low-level data processing. The power spectra estimated in this way
have allowed us to identify a systematic error associated with one of our two
scanning strategies, believed to be due to residual ground or atmospheric
contamination. We omit these data from our analysis and no longer use this
scanning technique for observations. We present the power spectra from our
first season of observing and demonstrate that the uncertainties are
integrating as expected for uncorrelated noise, with any residual systematics
suppressed to a level below the noise. Using the FPXS method, and combining
data on scales we estimate , the first direct 3D
constraint on the clustering component of the CO(1-0) power spectrum in the
literature.Comment: Paper 4 of 7 in series. 18 pages, 11 figures, as accepted in Ap
COMAP Early Science: VII. Prospects for CO Intensity Mapping at Reionization
We introduce COMAP-EoR, the next generation of the Carbon Monoxide Mapping
Array Project aimed at extending CO intensity mapping to the Epoch of
Reionization. COMAP-EoR supplements the existing 30 GHz COMAP Pathfinder with
two additional 30 GHz instruments and a new 16 GHz receiver. This combination
of frequencies will be able to simultaneously map CO(1--0) and CO(2--1) at
reionization redshifts () in addition to providing a significant
boost to the sensitivity of the Pathfinder. We examine a set of
existing models of the EoR CO signal, and find power spectra spanning several
orders of magnitude, highlighting our extreme ignorance about this period of
cosmic history and the value of the COMAP-EoR measurement. We carry out the
most detailed forecast to date of an intensity mapping cross-correlation, and
find that five out of the six models we consider yield signal to noise ratios
(S/N) for COMAP-EoR, with the brightest reaching a S/N above 400.
We show that, for these models, COMAP-EoR can make a detailed measurement of
the cosmic molecular gas history from , as well as probe the
population of faint, star-forming galaxies predicted by these models to be
undetectable by traditional surveys. We show that, for the single model that
does not predict numerous faint emitters, a COMAP-EoR-type measurement is
required to rule out their existence. We briefly explore prospects for a
third-generation Expanded Reionization Array (COMAP-ERA) capable of detecting
the faintest models and characterizing the brightest signals in extreme detail.Comment: Paper 7 of 7 in series. 19 pages, 10 figures, to be submitted to Ap
COMAP Early Science: V. Constraints and Forecasts at
We present the current state of models for the carbon monoxide (CO)
line-intensity signal targeted by the CO Mapping Array Project (COMAP)
Pathfinder in the context of its early science results. Our fiducial model,
relating dark matter halo properties to CO luminosities, informs parameter
priors with empirical models of the galaxy-halo connection and previous CO(1-0)
observations. The Pathfinder early science data spanning wavenumbers
-Mpc represent the first direct 3D constraint on the
clustering component of the CO(1-0) power spectrum. Our 95% upper limit on the
redshift-space clustering amplitude K greatly
improves on the indirect upper limit of K reported from the CO
Power Spectrum Survey (COPSS) measurement at Mpc. The COMAP
limit excludes a subset of models from previous literature, and constrains
interpretation of the COPSS results, demonstrating the complementary nature of
COMAP and interferometric CO surveys. Using line bias expectations from our
priors, we also constrain the squared mean line intensity-bias product,
K, and the cosmic molecular gas
density, Mpc (95% upper
limits). Based on early instrument performance and our current CO signal
estimates, we forecast that the five-year Pathfinder campaign will detect the
CO power spectrum with overall signal-to-noise of 9-17. Between then and now,
we also expect to detect the CO-galaxy cross-spectrum using overlapping galaxy
survey data, enabling enhanced inferences of cosmic star-formation and
galaxy-evolution history.Comment: Paper 5 of 7 in series. 17 pages + appendix and bibliography (30
pages total); 15 figures, 6 tables; accepted for publication in ApJ; v3
reflects the accepted version with minor changes and additions to tex
COMAP Early Science: II. Pathfinder Instrument
Line intensity mapping (LIM) is a new technique for tracing the global
properties of galaxies over cosmic time. Detection of the very faint signals
from redshifted carbon monoxide (CO), a tracer of star formation, pushes the
limits of what is feasible with a total-power instrument. The CO Mapping
Project (COMAP) Pathfinder is a first-generation instrument aiming to prove the
concept and develop the technology for future experiments, as well as
delivering early science products. With 19 receiver channels in a hexagonal
focal plane arrangement on a 10.4 m antenna, and an instantaneous 26-34 GHz
frequency range with 2 MHz resolution, it is ideally suited to measuring
CO(=1-0) from . In this paper we discuss strategies for designing
and building the Pathfinder and the challenges that were encountered. The
design of the instrument prioritized LIM requirements over those of ancillary
science. After a couple of years of operation, the instrument is well
understood, and the first year of data is already yielding useful science
results. Experience with this Pathfinder will drive the design of the next
generations of experiments.Comment: Paper 2 of 7 in series. 27 pages, 28 figures, submitted to Ap
COMAP Early Science: I. Overview
The CO Mapping Array Project (COMAP) aims to use line intensity mapping of
carbon monoxide (CO) to trace the distribution and global properties of
galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate
the technologies and techniques needed for this goal, a Pathfinder instrument
has been constructed and fielded. Sensitive to CO(1-0) emission from
- and a fainter contribution from CO(2-1) at -8, the
Pathfinder is surveying deg in a 5-year observing campaign to detect
the CO signal from . Using data from the first 13 months of observing,
we estimate on scales - the first direct
3D constraint on the clustering component of the CO(1-0) power spectrum. Based
on these observations alone, we obtain a constraint on the amplitude of the
clustering component (the squared mean CO line temperature-bias product) of
K - nearly an order-of-magnitude improvement
on the previous best measurement. These constraints allow us to rule out two
models from the literature. We forecast a detection of the power spectrum after
5 years with signal-to-noise ratio (S/N) 9-17. Cross-correlation with an
overlapping galaxy survey will yield a detection of the CO-galaxy power
spectrum with S/N of 19. We are also conducting a 30 GHz survey of the Galactic
plane and present a preliminary map. Looking to the future of COMAP, we examine
the prospects for future phases of the experiment to detect and characterize
the CO signal from the EoR.Comment: Paper 1 of 7 in series. 18 pages, 16 figures, submitted to Ap
- …