70 research outputs found

    Toward BCI-enabled Metaverse: A Joint Learning and Resource Allocation Approach

    Full text link
    Toward user-driven Metaverse applications with fast wireless connectivity and tremendous computing demand through future 6G infrastructures, we propose a Brain-Computer Interface (BCI) enabled framework that paves the way for the creation of intelligent human-like avatars. Our approach takes a first step toward the Metaverse systems in which the digital avatars are envisioned to be more intelligent by collecting and analyzing brain signals through cellular networks. In our proposed system, Metaverse users experience Metaverse applications while sending their brain signals via uplink wireless channels in order to create intelligent human-like avatars at the base station. As such, the digital avatars can not only give useful recommendations for the users but also enable the system to create user-driven applications. Our proposed framework involves a mixed decision-making and classification problem in which the base station has to allocate its computing and radio resources to the users and classify the brain signals of users in an efficient manner. To this end, we propose a hybrid training algorithm that utilizes recent advances in deep reinforcement learning to address the problem. Specifically, our hybrid training algorithm contains three deep neural networks cooperating with each other to enable better realization of the mixed decision-making and classification problem. Simulation results show that our proposed framework can jointly address resource allocation for the system and classify brain signals of the users with highly accurate predictions

    When Virtual Reality Meets Rate Splitting Multiple Access: A Joint Communication and Computation Approach

    Full text link
    Rate Splitting Multiple Access (RSMA) has emerged as an effective interference management scheme for applications that require high data rates. Although RSMA has shown advantages in rate enhancement and spectral efficiency, it has yet not to be ready for latency-sensitive applications such as virtual reality streaming, which is an essential building block of future 6G networks. Unlike conventional High-Definition streaming applications, streaming virtual reality applications requires not only stringent latency requirements but also the computation capability of the transmitter to quickly respond to dynamic users' demands. Thus, conventional RSMA approaches usually fail to address the challenges caused by computational demands at the transmitter, let alone the dynamic nature of the virtual reality streaming applications. To overcome the aforementioned challenges, we first formulate the virtual reality streaming problem assisted by RSMA as a joint communication and computation optimization problem. A novel multicast approach is then proposed to cluster users into different groups based on a Field-of-View metric and transmit multicast streams in a hierarchical manner. After that, we propose a deep reinforcement learning approach to obtain the solution for the optimization problem. Extensive simulations show that our framework can achieve the millisecond-latency requirement, which is much lower than other baseline schemes

    Reconstructing Human Pose from Inertial Measurements: A Generative Model-based Compressive Sensing Approach

    Full text link
    The ability to sense, localize, and estimate the 3D position and orientation of the human body is critical in virtual reality (VR) and extended reality (XR) applications. This becomes more important and challenging with the deployment of VR/XR applications over the next generation of wireless systems such as 5G and beyond. In this paper, we propose a novel framework that can reconstruct the 3D human body pose of the user given sparse measurements from Inertial Measurement Unit (IMU) sensors over a noisy wireless environment. Specifically, our framework enables reliable transmission of compressed IMU signals through noisy wireless channels and effective recovery of such signals at the receiver, e.g., an edge server. This task is very challenging due to the constraints of transmit power, recovery accuracy, and recovery latency. To address these challenges, we first develop a deep generative model at the receiver to recover the data from linear measurements of IMU signals. The linear measurements of the IMU signals are obtained by a linear projection with a measurement matrix based on the compressive sensing theory. The key to the success of our framework lies in the novel design of the measurement matrix at the transmitter, which can not only satisfy power constraints for the IMU devices but also obtain a highly accurate recovery for the IMU signals at the receiver. This can be achieved by extending the set-restricted eigenvalue condition of the measurement matrix and combining it with an upper bound for the power transmission constraint. Our framework can achieve robust performance for recovering 3D human poses from noisy compressed IMU signals. Additionally, our pre-trained deep generative model achieves signal reconstruction accuracy comparable to an optimization-based approach, i.e., Lasso, but is an order of magnitude faster

    New primitives of controlled elements F2/4 for block ciphers

    Get PDF
    This paper develops the cipher design approach based on the use of data-dependent operations (DDOs). A new class of DDO based on the advanced controlled elements (CEs) is introduced, which is proven well suited to hardware implementations for FPGA devices. To increase the hardware implementation efficiency of block ciphers, while using contemporary FPGA devices there is proposed an approach to synthesis of fast block ciphers, which uses the substitution-permutation network constructed on the basis of the controlled elements F2/4 implementing the 2 x 2 substitutions under control of the four-bit vector. There are proposed criteria for selecting elements F2/4 and results on investigating their main cryptographic properties. It is designed a new fast 128-bit block cipher MM-128 that uses the elements F2/4 as elementary building block. The cipher possesses higher performance and requires less hardware resources for its implementation on the bases of FPGA devices than the known block ciphers. There are presented result on differential analysis of the cipher MM-12

    A Human-Centric Metaverse Enabled by Brain-Computer Interface: A Survey

    Full text link
    The growing interest in the Metaverse has generated momentum for members of academia and industry to innovate toward realizing the Metaverse world. The Metaverse is a unique, continuous, and shared virtual world where humans embody a digital form within an online platform. Through a digital avatar, Metaverse users should have a perceptual presence within the environment and can interact and control the virtual world around them. Thus, a human-centric design is a crucial element of the Metaverse. The human users are not only the central entity but also the source of multi-sensory data that can be used to enrich the Metaverse ecosystem. In this survey, we study the potential applications of Brain-Computer Interface (BCI) technologies that can enhance the experience of Metaverse users. By directly communicating with the human brain, the most complex organ in the human body, BCI technologies hold the potential for the most intuitive human-machine system operating at the speed of thought. BCI technologies can enable various innovative applications for the Metaverse through this neural pathway, such as user cognitive state monitoring, digital avatar control, virtual interactions, and imagined speech communications. This survey first outlines the fundamental background of the Metaverse and BCI technologies. We then discuss the current challenges of the Metaverse that can potentially be addressed by BCI, such as motion sickness when users experience virtual environments or the negative emotional states of users in immersive virtual applications. After that, we propose and discuss a new research direction called Human Digital Twin, in which digital twins can create an intelligent and interactable avatar from the user's brain signals. We also present the challenges and potential solutions in synchronizing and communicating between virtual and physical entities in the Metaverse

    TSRNet: Simple Framework for Real-time ECG Anomaly Detection with Multimodal Time and Spectrogram Restoration Network

    Full text link
    The electrocardiogram (ECG) is a valuable signal used to assess various aspects of heart health, such as heart rate and rhythm. It plays a crucial role in identifying cardiac conditions and detecting anomalies in ECG data. However, distinguishing between normal and abnormal ECG signals can be a challenging task. In this paper, we propose an approach that leverages anomaly detection to identify unhealthy conditions using solely normal ECG data for training. Furthermore, to enhance the information available and build a robust system, we suggest considering both the time series and time-frequency domain aspects of the ECG signal. As a result, we introduce a specialized network called the Multimodal Time and Spectrogram Restoration Network (TSRNet) designed specifically for detecting anomalies in ECG signals. TSRNet falls into the category of restoration-based anomaly detection and draws inspiration from both the time series and spectrogram domains. By extracting representations from both domains, TSRNet effectively captures the comprehensive characteristics of the ECG signal. This approach enables the network to learn robust representations with superior discrimination abilities, allowing it to distinguish between normal and abnormal ECG patterns more effectively. Furthermore, we introduce a novel inference method, termed Peak-based Error, that specifically focuses on ECG peaks, a critical component in detecting abnormalities. The experimental result on the large-scale dataset PTB-XL has demonstrated the effectiveness of our approach in ECG anomaly detection, while also prioritizing efficiency by minimizing the number of trainable parameters. Our code is available at https://github.com/UARK-AICV/TSRNet.Comment: Accepted at ISBI 202

    A Novel Blockchain Based Information Management Framework for Web 3.0

    Full text link
    Web 3.0 is the third generation of the World Wide Web (WWW), concentrating on the critical concepts of decentralization, availability, and increasing client usability. Although Web 3.0 is undoubtedly an essential component of the future Internet, it currently faces critical challenges, including decentralized data collection and management. To overcome these challenges, blockchain has emerged as one of the core technologies for the future development of Web 3.0. In this paper, we propose a novel blockchain-based information management framework, namely Smart Blockchain-based Web, to manage information in Web 3.0 effectively, enhance the security and privacy of users data, bring additional profits, and incentivize users to contribute information to the websites. Particularly, SBW utilizes blockchain technology and smart contracts to manage the decentralized data collection process for Web 3.0 effectively. Moreover, in this framework, we develop an effective consensus mechanism based on Proof-of-Stake to reward the user's information contribution and conduct game theoretical analysis to analyze the users behavior in the considered system. Additionally, we conduct simulations to assess the performance of SBW and investigate the impact of critical parameters on information contribution. The findings confirm our theoretical analysis and demonstrate that our proposed consensus mechanism can incentivize the nodes and users to contribute more information to our systems
    • …
    corecore