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Abstract. In the present study, a novel quadrilateral element, namely SQ4C, combined with the Timoshenko
beam element is proposed for the static and buckling analyses of stiffened plate/shell structures. The idea be-
hind these elements is a treatment for shear locking as well as membrane locking arising from the framework
of the first-order shear deformation theory and a mesh with curved shell geometry. Formulations with ec-
centricity are also presented in this paper for the general case. The static and buckling analysis solutions and
comparison with other available numerical solutions are presented to illustrate the robustness of the pro-
posed elements to stiffened plate/shell structures. This paper also helps engineers in supplementing their
knowledge.

Keywords. Static analysis, Buckling, Stiffened plate/shell, Strain smoothing technique, Shear locking, Mem-
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1. Introduction

Stiffened plate/shell structures with complex behaviours have been studied for many years [1–5].
At present, stiffened structures are commonly used in many fields of engineering such as civil,
naval, aerospace, and so on. In [5] and [6], the orthotropic model and the grillage model were
first introduced in stiffened plate problems, but they were not suitable. To overcome these re-
strictions, some authors modified them by not only separating the plate and stiffeners but also
using some conditions at the contact surface between the plate and stiffeners. Based on these
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points, analytical methods and numerical methods, such as the Ritz method [7–11], the mesh-
free methods [12–14], the constraint method [15, 16], the finite difference method [17, 18], and
the finite element methods [19–24], were used for solving stiffened structure problems. Some
other developments that relate to stiffened plate/shell structures can be found in [25–29]. The
inference that uses stiffeners to enhance stiffness is simple, but the practical stiffener design is
difficult and complicated. An ineffective stiffener arrangement is unable not only to enhance the
structure load capacity but also to reduce it. Thus it is very important to understand the mecha-
nism by which a stiffener affects the structural behaviour as well as the stiffness. If stiffeners are
used to increase the structural stiffness, it can be understood as the enhancement of buckling
resistance and the reduction of structural deflection. Next, we mention the types of elements for
plate/shell mesh as used in [30–49] with different strategies to analyse structures based on finite
element procedures. In this study, a novel four-node quadrilateral element, namely SQ4C, is pre-
sented by using the strain smoothing technique and then combined with a strategy that reduces
the effects of both shear locking and membrane locking. The static and buckling behaviours of
stiffened plate/shell structures are the main focus of this paper. First, the theoretical formula-
tions of this structure that relate to the effects of stiffener eccentricity or concentricity are es-
tablished. Second, the element SQ4C based on the finite element formulation with many com-
mendable properties such as (i) shear-locking-free, (ii) membrane-locking-free, and (iii) smooth
strains related to cell smooth technology is presented. Third, the finite element formulations
for the stiffener as well as for the total structure are investigated in Sections 4 and 5. Some nu-
merical applications are presented in Section 6. Finally, some concluding remarks are given in
Section 7.

2. Theoretical formulations

2.1. Formulation for plate

A plate with a stiffener is illustrated in Figure 1a. Let u0, v0, and w0 be the displacements of a
point located on the mid-surface. Let βx and βy be the in-plane rotations about the y-axis and
the x-axis, respectively, and βz be the drilling rotation around the z-axis. Based on the first-order
shear deformation theory, the displacements u, v , and w are defined by

u(x, y, z) = u0(x, y)+ zβx (x, y), (1)

v(x, y, z) = v0(x, y)+ zβy (x, y), (2)

w(x, y, z) = w0(x, y). (3)

The in-plane, bending, and shear strains of the plate are given by

εinp =


u0,x

v0,y

u0,y + v0,x

=



∂

∂x
0 0 0 0 0

0
∂

∂y
0 0 0 0

∂

∂y

∂

∂x
0 0 0 0





u0

v0

w0

βx

βy

βz

= Oinp
p u, (4)
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Figure 1. (a) The stiffened plate and (b) the stiffener with the local coordinate system.

εb =


βx,x

βy,y

βx,y +βy,x

=



0 0 0
∂

∂x
0 0

0 0 0 0
∂

∂y
0

0 0 0
∂

∂y

∂

∂x
0





u0

v0

w0

βx

βy

βz

= Ob
p u, (5)

εs =
[

w,x +βx

w,y +βy

]
=

0 0
∂

∂x
1 0 0

0 0
∂

∂y
0 1 0




u0

v0

w0

βx

βy

βz

= Os
p u, (6)

where Oinp
p , Ob

p , and Os
p are called the operational matrices and u = [uo vo wo βx βy βz ]T is the

unknown vector of six independent field variables. With εinp, εb , and εs as mentioned above, the
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energy of elastic strain is presented for the plate as follows:

U elas
plate = 1

2

(Ï
Ω
εT

inpDinpεinp dΩ+
Ï
Ω
εT

b Dbenεb dΩ+
Ï
Ω
εT

s Dsheεs dΩ

)

= 1

2


Ï
Ω

uT(Oinp
p )TDinpOinp

p udΩ+
Ï
Ω

uT(Ob
p )TDbenOb

p udΩ

+
Ï
Ω

uT(Os
p )TDsheOs

p udΩ.

 (7)

Here,

Dinp = Et

1−ν2


1 ν 0
ν 1 0

0 0
1−ν

2

 , (8)

Dben = Et 3

12(1−ν2)


1 ν 0
ν 1 0

0 0
1−ν

2

 , (9)

Dshe = Etk

2(1+ν)

[
1 0
0 1

]
(10)

are the material matrices with a correction factor k = 5/6 and t is the thickness of the plate.
The energy of geometric strain that arises from in-plane pre-buckling stresses σ̄0 =

[σ0
x σ

0
y σ

0
x y 0 0 0]T is calculated for the plate by

U geo
plate =

Ñ
V
σ̄0ε

geo
p dV , (11)

where ε
geo
p is called the geometric strain of the plate,

ε
geo
p =



1

2
(w,x )2 + z2

2
(βx,x )2 + z2

2
(βy,x )2

1

2
(w,y )2 + z2

2
(βx,y )2 + z2

2
(βy,y )2

(w,x )(w,y )+ z2(βx,x )(βx,y )+ z2(βy,x )(βy,y )

0
0
0


. (12)

By integrating through the thickness of the plate and noting thatΩ is a domain ⊂ R2 that depicts
the middle surface Oxy of the plate,

U geo
plate =

1

2

Ï
Ω

(
_
ε

geo
p )

T_
σ0(

_
ε

geo
p )dΩ. (13)

This geometric strain of the plate can be rewritten as

U geo
plate =

1

2

Ï
Ω

uT(Ogeo
p )T_

σ0Ogeo
p udΩ (14)
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in which the matrices
_
ε

geo
p and

_
σ0 are given as

_
ε

geo
p =



0 0
∂

∂x
0 0 0

0 0
∂

∂y
0 0 0

0 0 0
∂

∂x
0 0

0 0 0
∂

∂y
0 0

0 0 0 0
∂

∂x
0

0 0 0 0
∂

∂y
0





uo

vo

wo

βx

βy

βz

= Ogeo
p u, (15)

_
σ0 =


tσ0 0 0

0
t 3

12
σ0 0

0 0
t 3

12
σ0

 (16)

with

σ0 =
[
σ0

x σ0
x y

σ0
x y σ0

y

]
. (17)

2.2. Formulation for stiffener

In Figure 1, the local coordinate O′rsz of the stiffener has an O′rs plane that coincides with the Oxy
plane of the plate. At the contact surface, the displacements of the plate or shell structures are
the same as the displacements of the stiffeners. By neglecting the lateral displacements and the
rotations along the z-axis of the stiffener, the displacements of the stiffener in local coordinates
are described by the middle surface displacements of the plate in the same coordinates. Then the
elastic strain field of the stiffener is given by

εelas
stiff =

 ur,r + zβr,r

us,r + zβs,r

uz,r + sβs,r +βr

 . (18)

The energy of elastic strain for the stiffener is presented as follows:

U elas
stiffener = 1

2

∫
l

Ï
Astiff

(εelas
stiff)TDstiffεelas

stiff dAstiffdl

= 1

2

∫
l

(
G Astiff(uz,r +βr )2 +G(Is + Iz )β2

s,r +E Astiff(ur,r +eβr,r )2

+E Isβ
2
r,r +G Astiff(us,r +eβs,r )2

)
dl , (19)

where

Dstiff =
E 0 0

0 G 0
0 0 G

 (20)

and G and E are the elastic and shear moduli, respectively. Furthermore, Is and Iz are the
second moments of the stiffener cross-sectional area Astiff related to the s-axis and the z-axis,
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respectively, and e is the eccentricity between the middle surface of the plate and the neutral axis
of the stiffener. The value G Astiff(us,r +eβs,r )2 is neglected because the energies on the plane of
the plate can be ignored. The energy of elastic strain of the stiffener is then rewritten in matrix
form as

U elas
stiffener =

1

2

∫
l

(
_
ε

elas
stiff)T_

Dstiff
_
ε

elas
stiff dl = 1

2

∫
l

uT
stiff(Oelas

stiff)T_

DstiffOelas
stiffustiffdl (21)

in which

_

Dstiff =


E Astiff 0 0 0

0 E Is 0 0
0 0 kG Astiff 0
0 0 0 G Ivenant

 , (22)

_
ε

elas
stiff =



∂

∂r
0 0 e

∂

∂r
0 0

0 0 0
∂

∂r
0 0

0 0
∂

∂r
1 0 0

0 0 0 0
∂

∂r
0


︸ ︷︷ ︸

_
O

elas

stiff



cx cy 0 0 0 0
−cy cx 0 0 0 0

0 0 1 0 0 0
0 0 0 cx cy 0
0 0 0 −cy cx 0
0 0 0 0 0 0


︸ ︷︷ ︸

Tr

ustiff, (23)

Oelas
stiff =

_

O
elas

stiffTr. (24)

Here, Tr is called the transformation matrix and cx and cy are the direction cosines. Moreover,
ustiff = [ustiff

o vstiff
o wstiff

o βstiff
x βstiff

y βstiff
z ]T, and St Venant’s torsion constant Ivenant is used to

replace the sum (Is + Iz ) for simplicity.
In the same manner, the energy of geometric strain that arises from in-plane pre-buckling

stresses σ̄0stiff = [σ0
x 0 0]T is calculated for the stiffener as

U geo
stiffener =

Ñ
V
σ̄0stiffε

geo
stiffdV , (25)

where ε
geo
stiff is called the geometric strain of the stiffener,

ε
geo
stiff =


1

2
(uz,r )2 + z2

2
(βr,r )2

0
0

 . (26)

By integrating through the cross-section of the stiffener, this energy of geometric strain can be
computed as

U geo
stiffener =

1

2

∫
l

(
_
ε

geo
stiff)T_

σ0stiff
_
ε

geo
stiffdl = 1

2

∫
l

uT
stiff(Ogeo

stiff)T_
σ0stiffOgeo

stiffustiffdl , (27)
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where the matrices
_
ε

geo
stiff,

_
σ0stiff, and Ogeo

stiff are given, respectively, by

_
ε

geo
stiff =

0 0
∂

∂r
0 0 0

0 0 0
∂

∂r
0 0


︸ ︷︷ ︸

_
O

geo

stiff



cx cy 0 0 0 0
−cy cx 0 0 0 0

0 0 1 0 0 0
0 0 0 cx cy 0
0 0 0 −cy cx 0
0 0 0 0 0 0


︸ ︷︷ ︸

Tr

ustiff, (28)

_
σ0stiff =

[
Astiffσ

0
x 0

0 (Is +e2 Astiff)σ0
x

]
, (29)

Ogeo
stiff =

_

O
geo

stiffTr. (30)

3. Quadrilateral element SQ4C for plate

3.1. In-plane part

The element with its mid-surface is separated into four domains, which are plotted in Fig-
ure 3. The assumed in-plane strain field is established by using the in-plane strains of these do-
mains [44–46]. The centre point is denoted by “5” on the mid-surface of this element as shown in
Figure 3a. The dependence of point “5” on four nodes “1”, “2”, “3”, and “4” is described as

x5 =
4∑

i=1
ςi xi , (31)

where ςi is calculated as

[ς1 ς2 ς3 ς4] = 1

2

A234

A234 + A124

[
1

3

1

3
0

1

3

]
+ 1

2

A124

A234 + A124

[
0

1

3

1

3

1

3

]
+ 1

2

A134

A134 + A123

[
1

3

1

3

1

3
0

]
+ 1

2

A123

A134 + A123

[
1

3
0

1

3

1

3

]
(32)

in which A234, A124, A134, and A123 are called the areas of four domains “234”, “124”, “134”, and
“123”, respectively.

By using the in-plane strains ε̃inp(A)
i j , ε̃inp(B)

i j , ε̃inp(C)
i j , and ε̃

inp(D)
i j evaluated from four domains

A, B, C, and D, four tying points are embedded into four positions as shown in Figures 2 and 3 to
compute an assumed strain field, which alleviates membrane locking:

ε̃
inp(A)
i j = B̃(A)

inpq(A)
inp, ε̃

inp(B)
i j = B̃(B)

inpq(B)
inp, ε̃

inp(C)
i j = B̃(C)

inpq(C)
inp, ε̃

inp(D)
i j = B̃(D)

inpq(D)
inp (33)

and

ε̃
inp
i j = 1

4 (ε̃inp(A)
i j + ε̃

inp(B)
i j + ε̃

inp(C)
i j + ε̃

inp(D)
i j )+ 1

2 (−ε̃inp(D)
i j + ε̃

inp(C)
i j )ξ

+ 1
2 (−ε̃inp(B)

i j + ε̃
inp(A)
i j )η. (34)

The relationship between the in-plane strain field and the nodal displacement is then writ-
ten as

ε̃inp = B̃inpqinp, (35)
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Figure 2. (a) A standard four-node quadrilateral element and (b) tying points on four sides.

where B̃inp is established by using four components B̃(A)
inp, B̃(B)

inp, B̃(C )
inp, and B̃(D)

inp of four triangular

domains A, B, C, and D and qinp is also given by connected four components q(A)
inp, q(B)

inp, q(C)
inp, and

q(D)
inp with the displacements at point “5” not being degrees of freedom in the element formulation:

q(A)
inp(i ) = [uoi voi ], i = 3,4,5, (36)

q(B)
inp(i ) = [uoi voi ], i = 1,2,5, (37)

q(C)
inp(i ) = [uoi voi ], i = 2,3,5, (38)

q(D)
inp(i ) = [uoi voi ], i = 1,4,5. (39)

Note that the in-plane displacement vector of the point “5” is absolutely approximated from the
nodal displacements as

qinp5 =
4∑

i=1
ςi qinp(i ), (40)

qinp(i ) = [uoi voi ]. (41)

3.2. Bending part

The bending strain is computed by using the cell-based smoothed method [35, 37] and as shown
in Figure 4. The quadrilateral element domain is further divided into nce smoothing cells. The
bending strain field is smoothed by a weighted average of the original bending strain using the
strain smoothing operation for each smoothing cell and applying the divergence theorem:

ε̃b(xC ) =
∫
ΩC

εb(x)Φ(x −xC )dΩ= 1

2AC

∫
ΓC

(βi n j +β j ni )dΓ, (42)

where xC is an arbitrary point,ΩC is the smoothing cell domain, βi is the in-plane rotation, ni is
the component of the outward unit vector normal to the boundary ΓC of the smoothing domain
ΩC , and Φ is a smoothing function that satisfies at least the unity property

∫
ΩC
ΦdΩ = 1 as well

C. R. Mécanique, 2020, 348, n 4, 285-305
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Figure 3. (a) Four domains on the mid-surface and (b) four other domains to determine
point “5”.

as Φ(x −xC ) = 1/AC with x ∈ΩC and Φ(x −xC ) = 0 with x ∉ΩC . The area of the smoothing cell is
clearly calculated as AC = ∫

ΩC
dΩ.

The relationship between the smoothed bending strain field and the nodal displacement is
then written as

ε̃b = B̃b qb , (43)

where

B̃bi =
1

AC

∫
ΓC

0 Ni nx 0

0 0 Ni ny

0 Ni ny Ni nx

dΓ, (44)

qbi = [w0i βxi βyi ]. (45)

Here, nx and ny are the components of the vector normal to the boundary ΓC .

3.3. Shear part

Based on the attenuation of the shear-locking phenomenon under an assumption of constant
transverse shear strains along four sides [41–43] and as shown in Figure 5, the transverse shear

C. R. Mécanique, 2020, 348, n 4, 285-305
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Figure 4. Subdivision of elements into nce smoothing cells and the values of shape func-
tions at nodes in the format (N1, N2, N3, N4).

Figure 5. Four tying points (E), (F), (G), and (H).

strain field is given as

ε̃s
ξt = 1

2 (1+η)εs(E)
ξt + 1

2 (1−η)εs(F )
ξt ,

ε̃s
ηt = 1

2 (1+ξ)εs(G)
ηt + 1

2 (1−ξ)εs(H)
ηt .

(46)

Here, εs(E)
ξt , εs(F)

ξt , εs(G)
ξt , and εs(H)

ξt are four transverse shear strains directly computed from the
displacement approximation at points (E), (F), (G), and (H), respectively.

The shear matrix can be presented as

B̃si =
[

x,ξ y,ξ

x,η y,η

]−1 [
Ni ,ξ b11

i Ni ,ξ b12
i Ni ,ξ

Ni ,η b21
i Ni ,η b22

i Ni ,η

]
, (47)
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where b11
i = ξi xR1

,ξ , b12
i = ξi yR1

,ξ , b21
i = ηi xR2

,η , and b22
i = ηi yR2

,η in which ξi ∈ {−1 1 1 −1}, ηi ∈
{−1 −1 1 1}, and (i ,R1,R2) ∈ {(1,F, H), (2,F,G), (3,E ,G), (4,E , H)}.

3.4. Combination of three parts

Due to the appearance of the drilling rotation βz , we used the Allman strategy that is detailed in
the original reference [50] or our other paper [37] for independent interpolation. The in-plane
stiffness matrix that is achieved in Section 3.1 is added by the new component γ

∫
ΩbTbdΩ. The

positive penalty parameter γ=G is chosen in this study as follows [50]:

bi =


− 1

2 Ni ,y

− 1
2 Ni ,x

− 1
2 (N xi ,y +N yi ,x )−Ni

 , (48)

Ni (ξ,η) = 1
4 (1+ξiξ)(1+ηiη), i = 1,2,3,4, (49)

N xi = 1
8 (yi j Nl − yi k Nm) and N yi = 1

8 (xi j Nl −xi k Nm), (50)

xi j = x j −xi and yi j = y j − yi , (51)

Matlab code definition: i = 1,2,3,4; m = i +4;

l = m −1+4 floor(1/i ); k = mod(m,4)+1; j = l −4.
(52)

Finally, the global stiffness matrix K̃plate is obtained as

K̃plate = K̃inp + K̃b + K̃s , (53)

where

K̃inp =
∫
Ω

B̃T
inpDinpB̃inp dΩ+γ

∫
Ω

bTbdΩ, (54)

K̃b =
∫
Ω

B̃T
b Db B̃b dΩ=

nce∑
i

B̃T
bi Db B̃bi AC , (55)

K̃s =
∫
Ω

B̃T
s Ds B̃s dΩ. (56)

Here, nce is the number of smoothing cells; note that nce = 2 in order to obtain a suitable rank.
For buckling analysis, the smoothed geometric stiffness matrix of the plate can be obtained as

K̃geo-plate =
∫
Ω

B̃T
geo

_
σ0B̃geo dΩ=

nce∑
i

B̃T
geoi

_
σ0B̃geoi AC , (57)

where

B̃geoi = 1

AC

∫
ΓC



Ni nx 0 0
Ni ny 0 0

0 Ni nx 0
0 Ni ny 0
0 0 Ni nx

0 0 Ni ny

dΓ. (58)

Note that nce = 1 in this case.

4. Timoshenko beam element for stiffener

By using the two-node isoparametric Timoshenko beam element to model the stiffener, the
vector of displacement field on the elth element is presented as

uel
stiff =

2∑
k=1

Ψk I6qk
stiff, (59)
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where qk
stiff = [ur us uz βr βs βz ]T is the displacement vector of the kth node of the elth element

andΨk with k = 1,2 are the linear shape functions in natural coordinates defined as

Ψ1 = 1
2 (1−ξ), Ψ2 = 1

2 (1+ξ), ξ ∈ [−1,1]. (60)

We divide the stiffener into nstiff elements. Then the stiffness and geometric matrices are
given as

K̃stiff =
nstiff∑
el=1

K̃el
stiff, (61)

K̃geo-stiff =
nstiff∑
el=1

K̃el
geo-stiff, (62)

where

K̃el
stiff =

∫
l
(Oelas

stiffΨ)T_

DstiffOelas
stiffΨdl , (63)

K̃el
geo-stiff =

∫
l

(Ogeo
stiffΨ)T_

σ0stiffOgeo
stiffΨdl . (64)

5. Finite element formulations for static and buckling analyses

Based on the above sections, the stiffness and geometric matrices of the stiffened structures are
calculated:

K̃struc = K̃plate +TTK̃stiffT, (65)

K̃geo-struc = K̃geo-plate +TTK̃geo-stiffT, (66)

where T is the transformation matrix as given by [12,13,22]. For the general case, we can establish
a stiffener that is placed askew an angle to the x-axis by modifying this transformation matrix.

For static analysis, we use the formulation

K̃strucq = F. (67)

In addition, for buckling analysis, the formulation is presented as

(K̃struc −λcrK̃geo-struc)q = 0. (68)

6. Numerical examples

Six numerical examples are presented in this section to show the efficiency and effectiveness
of the proposed elements. Obviously, these solutions of static and buckling analyses are com-
pared with other available results. The simply supported boundary conditions are expressed as
u0 = w0 = βx = βz = 0 on edges in the x-direction and v0 = w0 = βy = βz = 0 on edges in the
y-direction for plate examples. Furthermore, the rigid diaphragm boundary conditions are ex-
pressed as u0 = v0 = w0 =βy =βz = 0 on curved edges along the y-direction for the shell roof.

6.1. Static analysis

First, we consider a simply supported stiffened plate structure that is plotted in Figure 6. A
uniform load q = 6.89476 × 10−3 N/mm2 is applied on the top surface of this structure. The
material properties E = 1.1721×105 N/mm2 and ν= 0.3 are assumed to be the same in the plate
and the stiffener. The plate is discretized using 4×4, 6×6, 8×8, 10×10, 12×12, and 14×14 meshes
for this study. The normalized central deflections w̄ = w0central/(qL4/100D) of this structure
based on these SQ4C elements for the case of the eccentric plate are presented in Table 1. It
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Figure 6. The square plate stiffened by one stiffener.

Figure 7. The convergence of the normalized central deflection.

Table 1. Comparison of the normalized deflection at the central point

Mesh Central deflection
Trung et al. [22] Rossow [15] NASTRAN [22] SQ4C

4 × 4 0.0198 - - 0.02016
6 × 6 0.0216 - - 0.02171
8 × 8 0.0223 0.0213 0.0232 0.02230

10 × 10 0.0226 - - 0.02257
12 × 12 0.0227 - - 0.02272
14 × 14 - - - 0.02281

can be seen that these solutions are in good agreement with the solutions of Rossow [15], Trung
et al. [22], and the NASTRAN software [22] as shown in Table 1 and Figure 7.
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Figure 8. The square plate stiffened by two stiffeners.

Figure 9. The decrease in deflection based on the number of stiffeners.

Next, a simply supported square plate stiffened by two stiffeners is studied as shown in
Figure 8. The material properties and the value of the load are similar to those in the previous
example. The influence of stiffeners on the deflection of plates is presented in Figure 9.

The last example in this section is a cylindrical shell roof that is supported on a rigid diaphragm
on its curved boundaries. This structure with two eccentric stiffeners at the straight edges as
shown in Figure 10 is studied. Geometric and material properties of the shell and the stiffener
are given by R = 7.62 m, t = 0.0762 m, a = 15.24 m, α = 40◦, hs = 1.0 m, bs = 0.5 m, E =
6.848× 1010 N/m2, and ν = 0.3. We note that material properties of the shell and the stiffener
are taken to be the same. This shell is subjected to an intensity of gravity load q = 4.393 kN/m2;
for the stiffener, the gravity load is considered as qs = Astiff×γs , where γs = 24 kN/m3 and Astiff

is the cross-sectional area of the stiffener. Some available references related to this example are
Omurtag and Akoz [28], Sinha [29], and Prusty and Satsangi [29]. In these references, this example
was solved by using four-node rectangular elements for the shell and two-node bars for the
stiffener in the model, triangular shallow shell elements based on a higher order strategy, and
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Figure 10. (a) The cylindrical shell roof stiffened by two stiffeners, (b) the cross-section, (c)
regular mesh 8 × 8 for a quarter, and (d) irregular mesh 8 × 8 for a quarter with factor
df = 0.3.

eight-node isoparametric elements for the shell and three-node curved beam elements for the
stiffener, respectively.

The convergence of central deflections of this shell roof with and without stiffeners by the
SQ4C for the cases of regular (df = 0) and irregular (df = 0.1, 0.2, and 0.3) meshes, together with
the results by Omurtag and Akoz [28], Sinha [29], and Prusty and Satsangi [29], is presented in
Table 2. Note that df is a controlling distortion factor. This factor is used to control the shapes of
elements as given in [33].

6.2. Buckling analysis

One concentric stiffener is embedded in the simply supported square plate as shown in Fig-
ure 11. An in-plane load σx is applied on this structure. Three factors that are used for this
structural analysis are given by β = L/B , γ = E Is /BD , and δ = Astif/BL, where Is = bs h3

s /12,
D = Et 3/12(1−ν2), and Astiff = bs hs . The buckling parameter is defined by λ̄cr =λcrL2/π2D .
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Figure 11. The square plate stiffened by one stiffener.

Table 2. Comparison of vertical deflection at the central point

Deflection at central point (cm) Unstiffened Stiffened with hs = 1.0 m and bs = 0.5 m
Omurtag and Akoz [28] 1.4200 0.1500

Sinha [29] 1.3300 0.1300
Prusty and Satsangi [29] 1.4200 0.1759

SQ4C (re) 1.3517 0.1535
SQ4C (irre, df = 0.1) 1.3469 0.1501
SQ4C (irre, df = 0.2) 1.3414 0.1475
SQ4C (irre, df = 0.3) 1.3287 0.1390

Table 3. Comparison of the buckling parameter λ̄cr

γ= 5; δ= 0.05 Timoshenko and Gere [51] Trung et al. [22] SQ4C

β= 1 12.0 11.7 11.2
β= 2 8.2 8.4 8.7

γ= 10; δ= 0.05 Timoshenko and Gere [51] Trung et al. [22] SQ4C

β= 1 16.0 16.2 15.9
β= 2 10.3 10.2 11.4

γ= 15; δ= 0.05 Timoshenko and Gere [51] Trung et al. [22] SQ4C

β= 1 16.0 16.3 15.9
β= 2 12.5 12.3 13.6

γ= 20; δ= 0.05 Timoshenko and Gere [51] Trung et al. [22] SQ4C

β= 1 16.0 16.2 15.9
β= 2 14.7 14.3 14.5

The buckling parameters of this structure based on the change in the above factors are
presented in Table 3. It can be seen that the solutions of this paper based on the SQ4C elements
have a suitable convergence with the analytical solutions of Timoshenko and Gere [51] and the
numerical solutions of Trung et al. [22]. Figure 12 plots the first six buckling mode shapes of
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Figure 12. The first six buckling mode shapes with β= 1, γ= 5, and δ= 0.05.

the simple support square plate stiffened by one concentric stiffener and with β = 1, γ = 5, and
δ= 0.05.

By changing the number of stiffeners, we study a simply supported square plate that is
stiffened by n stiffeners as illustrated in Figure 13. Let n be equal to 1, 2, 3, 5, and 11. The
parameters γ= 0.4 and δ= 0.02 are used in this example.

The convergence of buckling parameters of this structure by the SQ4C, together with the
results by Zhao [52], is presented in Figure 14.

Finally, an isotropic stiffened cylindrical shell is studied in this section as shown in Figure 15.
The numbers of axial and circumferential stiffeners are 15 and 20. Let hs = bs = 1 mm, E =
151 GPa, and ν= 0.3. The critical axial buckling loads for this structure with L/R = 1 and R = 0.3 m
are listed in Table 4. It can be seen that the critical buckling loads by the SQ4C are in good
agreement with the results by Almroth and Brush [53] and Farahani et al. [47].

7. Conclusions

The novel quadrilateral element, namely SQ4C, is presented and successfully applied to an
analysis of stiffened plate/shell structures. Numerical analyses of statics and buckling have been
conducted to verify the robustness of the proposed element. The present element can yield
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Figure 13. The square plate stiffened by n stiffeners.

Figure 14. The buckling parameter of square plate stiffened by n stiffeners.

Table 4. Comparison of the critical axial buckling load (MN)

Almroth and Brush [53] Farahani et al. [47] SQ4C (re) SQ4C (irre, df = 0.3)
t/R = 1/30 26.3023 25.9558 25.2167 25.2209
t/R = 1/50 9.4827 9.4776 9.5931 9.3937

t/R = 1/100 2.3659 2.3743 2.4840 2.4728
t/R = 1/200 0.5988 0.5999 0.5809 0.5823
t/R = 1/300 0.2672 0.2686 0.2604 0.2602

satisfactory results in comparison with other available numerical results. In addition, the present
element has the advantages of being simple in the formulation and implementation of static and
buckling analyses of both plate and shell structures.
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Figure 15. (a) The stiffened cylindrical shell, (b) the cross-section, (c) regular mesh 6 × 6
for one cell, and (d) irregular mesh 6 × 6 for one cell with factor df = 0.3.
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