5 research outputs found

    Passerine extra-pair mating dynamics: A model-based comparison of four species.

    Get PDF
    In many socially monogamous animals, females engage in extrapair copulation (EPC), causing some broods to contain both within-pair and extrapair young (EPY). The proportion of all young that are EPY varies across populations and species. Because an EPC that does not result in EPY leaves no forensic trace, this variation in the proportion of EPY reflects both variation in the tendency to engage in EPC and variation in the extrapair fertilization (EPF) process across populations and species. We analyzed data on the distribution of EPY in broods of four passerines (blue tit, great tit, collared flycatcher, and pied flycatcher), with 18,564 genotyped nestlings from 2,346 broods in two to nine populations per species. Our Bayesian modeling approach estimated the underlying probability function of EPC (assumed to be a Poisson function) and conditional binomial EPF probability.We used an information theoretical approach to show that the expected distribution of EPC per female varies across populations but that EPF probabilities vary on the above-species level (tits vs. flycatchers). Hence, for these four passerines, our model suggests that the probability of an EPC mainly is determined by ecological (population-specific) conditions, whereas EPF probabilities reflect processes that are fixed above the species level

    Sex chromosome-linked species recognition and evolution of reproductive isolation in flycatchers

    No full text
    Interbreeding between species (hybridization) typically produces unfit offspring. Reduced hybridization should therefore be favored by natural selection. However, this is difficult to accomplish because hybridization also sets the stage for genetic recombination to dissociate species-specific traits from the preferences for them. Here we show that this association is maintained by physical linkage (on the same chromosome) in two hybridizing Ficedula flycatchers. By analyzing the mating patterns of female hybrids and cross-fostered offspring, we demonstrate that species recognition is inherited on the Z chromosome, which is also the known location of species-specific male plumage traits and genes causing low hybrid fitness. Limited recombination on the Z chromosome maintains associations of Z-linked genes despite hybridization, suggesting that the sex chromosomes may be a hotspot for adaptive speciation

    Data from: Identifying the African wintering grounds of hybrid flycatchers using a multi–isotope (ή2H, ή13C, ή15N) assignment approach

    No full text
    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species’ strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (ή15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (ή13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (ή2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher

    Data from: Passerine extrapair mating dynamics: A Bayesian modeling approach comparing four species

    No full text
    In many socially monogamous animals, females engage in extrapair copulation (EPC), causing some broods to contain both within‐pair and extrapair young (EPY). The proportion of all young that are EPY varies across populations and species. Because an EPC that does not result in EPY leaves no forensic trace, this variation in the proportion of EPY reflects both variation in the tendency to engage in EPC and variation in the extrapair fertilization (EPF) process across populations and species. We analyzed data on the distribution of EPY in broods of four passerines (blue tit, great tit, collared flycatcher, and pied flycatcher), with 18,564 genotyped nestlings from 2,346 broods in two to nine populations per species. Our Bayesian modeling approach estimated the underlying probability function of EPC (assumed to be a Poisson function) and conditional binomial EPF probability. We used an information theoretical approach to show that the expected distribution of EPC per female varies across populations but that EPF probabilities vary on the above‐species level (tits vs. flycatchers). Hence, for these four passerines, our model suggests that the probability of an EPC mainly is determined by ecological (population‐specific) conditions, whereas EPF probabilities reflect processes that are fixed above the species level.,DataPlottedInFig1.xlsxRaw data for Figure 1 in original articleRawDataFile.txt
    corecore