15,273 research outputs found

    Quantum Monte Carlo and exact diagonalization study of a dynamic Hubbard model

    Full text link
    A one-dimensional model of electrons locally coupled to spin-1/2 degrees of freedom is studied by numerical techniques. The model is one in the class of dynamicdynamic HubbardHubbard modelsmodels that describe the relaxation of an atomic orbital upon double electron occupancy due to electron-electron interactions. We study the parameter regime where pairing occurs in this model by exact diagonalization of small clusters. World line quantum Monte Carlo simulations support the results of exact diagonalization for larger systems and show that kinetic energy is lowered when pairing occurs. The qualitative physics of this model and others in its class, obtained through approximate analytic calculations, is that superconductivity occurs through hole undressing even in parameter regimes where the effective on-site interaction is strongly repulsive. Our numerical results confirm the expected qualitative behavior, and show that pairing will occur in a substantially larger parameter regime than predicted by the approximate low energy effective Hamiltonian.Comment: Some changes made in response to referees comments. To be published in Phys.Rev.

    Towards an understanding of hole superconductivity

    Full text link
    From the very beginning K. Alex M\"uller emphasized that the materials he and George Bednorz discovered in 1986 were holehole superconductors. Here I would like to share with him and others what I believe to be thethe key reason for why high TcT_c cuprates as well as all other superconductors are hole superconductors, which I only came to understand a few months ago. This paper is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday. arXiv admin note: text overlap with arXiv:1703.0977

    Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates

    Full text link
    Experimental evidence indicates that the superconducting transition in high TcT_c cuprates is an 'undressing' transition. Microscopic mechanisms giving rise to this physics were discussed in the first paper of this series. Here we discuss the calculation of the single particle Green's function and spectral function for Hamiltonians describing undressing transitions in the normal and superconducting states. A single parameter, Υ\Upsilon, describes the strength of the undressing process and drives the transition to superconductivity. In the normal state, the spectral function evolves from predominantly incoherent to partly coherent as the hole concentration increases. In the superconducting state, the 'normal' Green's function acquires a contribution from the anomalous Green's function when Υ \Upsilon is non-zero; the resulting contribution to the spectral function is positivepositive for hole extraction and negativenegative for hole injection. It is proposed that these results explain the observation of sharp quasiparticle states in the superconducting state of cuprates along the (π,0)(\pi,0) direction and their absence along the (π,π)(\pi,\pi) direction.Comment: figures have been condensed in fewer pages for easier readin

    Superconductivity from Undressing

    Full text link
    Photoemission experiments in high TcT_c cuprates indicate that quasiparticles are heavily 'dressed' in the normal state, particularly in the low doping regime. Furthermore these experiments show that a gradual undressing occurs both in the normal state as the system is doped and the carrier concentration increases, as well as at fixed carrier concentration as the temperature is lowered and the system becomes superconducting. A similar picture can be inferred from optical experiments. It is argued that these experiments can be simply understood with the single assumption that the quasiparticle dressing is a function of the local carrier concentration. Microscopic Hamiltonians describing this physics are discussed. The undressing process manifests itself in both the one-particle and two-particle Green's functions, hence leads to observable consequences in photoemission and optical experiments respectively. An essential consequence of this phenomenology is that the microscopic Hamiltonians describing it break electron-hole symmetry: these Hamiltonians predict that superconductivity will only occur for carriers with hole-like character, as proposed in the theory of hole superconductivity

    Evolving text classification rules with genetic programming

    Get PDF
    We describe a novel method for using genetic programming to create compact classification rules using combinations of N-grams (character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that the rules may have a number of other uses beyond classification and provide a basis for text mining applications

    The actual impedance of non-reflecting boundary conditions : implications for the computation of resonators

    Get PDF
    Non-reflecting boundary conditions are essential elements in the computation of many compressible flows: such simulations are very sensitive to the treatment of acoustic waves at boundaries. Non-reflecting conditions allow acoustic waves to propagate through boundaries with zero or small levels of reflection into the domain. However, perfectly non-reflecting conditions must be avoided because they can lead to ill-posed problems for the mean flow. Various methods have been proposed to construct boundary conditions which can be sufficiently non-reflecting for the acoustic field while still making the mean-flow problem well posed. This paper analyses a widely-used technique for non-reflecting outlets (Rudy and Strikwerda, Poinsot and Lele). It shows that the correction introduced by these authors can lead to large reflection levels and non-physical resonant behaviors. A simple scaling is proposed to evaluate the relaxation coefficient used in theses methods for a non-reflecting outlet. The proposed scaling is tested for simple cases (ducts) both theoretically and numerically

    Bond-charge Interaction in the extended Hubbard chain

    Full text link
    We study the effects of bond-charge interaction (or correlated hopping) on the properties of the extended ({\it i.e.,} with both on-site (UU) and nearest-neighbor (VV) repulsions) Hubbard model in one dimension at half-filling. Energy gaps and correlation functions are calculated by Lanczos diagonalization on finite systems. We find that, irrespective of the sign of the bond-charge interaction, XX, the charge--density-wave (CDW) state is more robust than the spin--density-wave (SDW) state. A small bond-charge interaction term is enough to make the differences between the CDW and SDW correlation functions much less dramatic than when X=0X=0. For X=tX=t and fixed V<2tV<2t (tt is the uncorrelated hopping integral), there is an intermediate phase between a charge ordered phase and a phase corresponding to singly-occupied sites, the nature of which we clarify: it is characterized by a succession of critical points, each of which corresponding to a different density of doubly-occupied sites. We also find an unusual slowly decaying staggered spin-density correlation function, which is suggestive of some degree of ordering. No enhancement of pairing correlations was found for any XX in the range examined.Comment: 10 pages, 7 PostScript figures, RevTeX 3; to appear in Phys Rev

    R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay

    Get PDF
    We consider contributions of R-parity conserving softly broken supersymmetry (SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY model with a Majorana neutrino mass. The new R-parity conserving SUSY contributions to \znbb are realized at the level of box diagrams. We derive the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to the Majorana neutrino mass is also derived. Given the data on the \znbb-decay half-life of 76^{76}Ge and the neutrino mass we obtain constraints on the (B-L)-violating sneutrino mass. These constraints leave room for accelerator searches for certain manifestations of the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most probably too tight for first generation (B-L)-violating sneutrino masses to be searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende

    An index to quantify an individual's scientific research output that takes into account the effect of multiple coauthorship

    Full text link
    I propose the index \hbar ("hbar"), defined as the number of papers of an individual that have citation count larger than or equal to the \hbar of all coauthors of each paper, as a useful index to characterize the scientific output of a researcher that takes into account the effect of multiple coauthorship. The bar is higher for \hbar.Comment: A few minor changes from v1. To be published in Scientometric
    corecore