173 research outputs found

    Indian Monsoonal Variations During the Past 80 Kyr Recorded in NGHP-02 Hole 19B, Western Bay of Bengal: Implications From Chemical and Mineral Properties

    Get PDF
    金沢大学理工研究域地球社会基盤学系Detailed reconstruction of Indian summer monsoons is necessary to better understand the late Quaternary climate history of the Bay of Bengal and Indian peninsula. We established a chronostratigraphy for a sediment core from Hole 19B in the western Bay of Bengal, extending to approximately 80 kyr BP and examined major and trace element compositions and clay mineral components of the sediments. Higher δ 18 O values, lower TiO 2 contents, and weaker weathering in the sediment source area during marine isotope stages (MIS) 2 and 4 compared to MIS 1, 3, and 5 are explained by increased Indian summer monsoonal precipitation and river discharge around the western Bay of Bengal. Clay mineral and chemical components indicate a felsic sediment source, suggesting the Precambrian gneissic complex of the eastern Indian peninsula as the dominant sediment source at this site since 80 kyr. Trace element ratios (Cr/Th, Th/Sc, Th/Co, La/Cr, and Eu/Eu*) indicate increased sediment contributions from mafic rocks during MIS 2 and 4. We interpret these results as reflecting the changing influences of the eastern and western branches of the Indian summer monsoon and a greater decrease in rainfall in the eastern and northeastern parts of the Indian peninsula than in the western part during MIS 2 and 4. © 2018. American Geophysical Union. All Rights Reserved

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Thermal conductivity profilein the Nankaiaccretionary prism at IODP NanTroSEIZE Site C0002: estimationsfromhigh-pressure experiments using input site sediments

    Get PDF
    Depth profiles of sediment thermal conductivity are required for understanding the thermal structure in active seismogenic zones. During the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), a scientific drilling project of the International Ocean Discovery Program (IODP), a borehole was penetrated to a depth of 3, 262.5 m below seafloor (mbsf) at Site C0002. Because core samples obtained from below ~1, 100 mbsf in an accretionary prism are limited, a thermal conductivity profile over such depths usually determined by laboratory measurements using core samples is not available. To obtain the thermal conductivity profile at Site C0002, we used core samples collected from sediments that overlay the incoming subducting oceanic basement at Nankai Trough Seismogenic Zone Experiment Site C0012, which can be considered to have the same mineral composition as the accretional prism at Site C0002. The thermal conductivity of the C0012 core samples was measured at high pressure to simulate subduction by reducing the sample porosity. We measured the thermal conductivity of six core samples from 144–518 mbsf at Site C0012 up to a maximum effective pressure of ~50 MPa, corresponding to depths greater than ~4 km below seafloor. We obtained an empirical relation between thermal conductivity λBulk in Wm⁻¹K⁻¹ and fractional porosity ϕ for the Nankai Trough accretionary prism as λBulk = exp(−1.09ϕ + 0.977). Based on porosity data measured using core/cuttings samples and data derived from P wave velocity logs, we estimate two consistent and complete thermal conductivity profiles down to ~3 km below seafloor in the Nankai Trough accretionary prism. These profiles are consistent with the existing thermal conductivity data measured using limited core samples

    Efficacy and visual prognostic factors of intravitreal bevacizumab as needed for macular edema secondary to central retinal vein occlusion

    Get PDF
    textabstractAbstract This paper analyzes the verdicts of various film organizations that annually present awards to motion pictures and investigates whether they award/nominate the same movies in a given year. This research disputes previous findings which reported a high level of agreement between those juries, by the means of reliability analysis and the Cronbach's Alpha composite. Arguments were raised for why these earlier findings were flawed and why the use of Cronbach's Alpha is problematic. Different aspects of consensus are discussed after which a new measure (߀) is introduced. This is followed by a detailed comparison between particular juries with regard to the percentage share of their decisions that award the most successful (chosen by multiple other juries as well) and the least successful (uniquely awarded) films. This measure shows how often a singular jury decides in line with the others and how much does it stray from the consensus. The paper also broadens the theoretical discussions about the reasons for (not) expecting a consensus to arise between various expert juries. It argues that by adopting a cultural economic perspective we become aware of various reasons, most importantly competition between the award events and the juries tend towards a lower level of consensus
    corecore