13 research outputs found

    Controlling silver nanoparticle exposure in algal toxicity testing - A matter of timing

    Get PDF
    The aquatic ecotoxicity testing of nanoparticles is complicated by unstable exposure conditions resulting from various transformation processes of nanoparticles in aqueous suspensions. In this study, we investigated the influence of exposure timing on the algal test response to silver nanoparticles (AgNPs), by reducing the incubation time and by aging the AgNPs in algal medium prior to testing. The freshwater green algae Pseudokirchneriella subcapitata were exposed to AgNO(3), NM-300 K (a representative AgNP) and citrate stabilized AgNPs from two different manufacturers (AgNP1 and AgNP2) in a standard algal growth inhibition test (ISO 8692:2004) for 48 h and a short-term (2 h) (14)C-assimilation test. For AgNO(3), similar responses were obtained in the two tests, whereas freshly prepared suspensions of citrate stabilized AgNPs were less toxic in the 2-h tests compared to the 48-h tests. The 2-h test was found applicable for dissolved silver, but yielded non-monotonous concentration–response relationships and poor reproducibility for freshly prepared AgNP suspensions. However, when aging AgNPs in algal medium 24 h prior to testing, clear concentration–response patterns emerged and reproducibility increased. Prolonged aging to 48 h increased toxicity in the 2-h tests whereas aging beyond 48 h reduced toxicity. Our results demonstrate that the outcome of algal toxicity testing of AgNPs is highly influenced not only by the test duration, but also by the time passed from the moment AgNPs are added to the test medium. This time-dependency should be considered when nanomaterial dispersion protocols for ecotoxicity testing are developed

    Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review

    Get PDF

    Cadmium uptake by durum wheat in presence of citrate

    No full text
    The aim of this study was to determine the mechanisms underlying the uptake of Cd by durum wheat (Triticum turgidum L. ssp. durum cv. “acalou”) in the presence of citrate under hydroponic conditions. Wheat seedlings were exposed for 3 h to simplified nutrient solutions initially containing 35 nM of free Cd with or without citrate. Uptake experiments with citrate alone were also performed. Solutions were radio labelled with 109Cd or citrate-14C. The depletion of Cd and citrate in the exposure solution was followed, and at the end of the exposure Cd and citrate were quantified in all compartments of the experimental system (root surface, inner roots and aerial parts). The apparent rates of internalization of Cd (r Cd) and citrate (r cit) were estimated from the ratio of the uptake flux to the contents adsorbed at the root surface. About two times more Cd was taken up in the presence of citrate. Assuming that citrate and Cd-citrate complexes were taken up at the same rate, a direct uptake of intact complexes could not account for the higher uptake of Cd in presence of citrate. In addition, Cd was internalized at the same rate in the absence or presence of citrate (r Cd = 3.62 h−1), whereas the internalization rate constants of Cd and citrate were different (r Cd ≈ 8 r cit). This strengthens the idea that a direct uptake of non-dissociated Cd-citrate complexes probably did not account for the higher Cd uptake in presence of citrate. A dissociation of Cd-citrate complexes within the diffusion layer or at the root surface and the subsequent additional supply of free Cd were more likely to explain the higher Cd uptake in presence of citrate

    Binational efforts addressing cyanobacterial harmful algal blooms in the great lakes

    No full text
    Cyanobacterial harmful algal blooms (cyanoHABs) are a recurring impairment in many of the lakes and connecting water bodies that make up the Laurentian Great Lakes. In many of these lakes, eutrophication during the twentieth century resulted in shifts in summer phytoplankton populations to communities dominated by harmful and noxious colonial and filamentous cyanobacteria. Nutrient pollution of Lake Erie was an important factor behind the implementation of the 1972 Great Lakes Water Quality Agreement between the USA and Canada. While the GLWQA has been effective in targeting point sources of nutrient loading, nonpoint source contributions related to agricultural activity have increased in recent decades. Re-eutrophication as experienced in parts of western Lake Erie and portions of the other Great Lakes is exacerbated by global climate change with these factors collectively contributing to a resurgence in the frequency and severity of cyanoHABs. As the Laurentian Great Lakes are shared waters between the USA and Canada, successful mitigation of cyanoHABs will require increased binational coordination
    corecore