26 research outputs found

    LODEWAVE: LOng-Duration balloon Experiment of gravity WAVE over Antarctica

    Get PDF
    The Tenth Symposium on Polar Science/Special session: [S] Future plan of Antarctic research: Towards phase X of the Japanese Antarctic Research Project (2022-2028) and beyond, Tue. 3 Dec. / Entrance Hall (1st floor) at National Institute of Polar Research (NIPR

    Identification and functional characterisation of N-linked glycosylation of the orphan G protein-coupled receptor Gpr176

    Get PDF
    G-protein-coupled receptors (GPCRs) are important drug targets with diverse therapeutic applications. However, there are still more than a hundred orphan GPCRs, whose protein functions and biochemical features remain unidentified. Gpr176 encodes a class-A orphan GPCR that has a role in circadian clock regulation in mouse hypothalamus and is also implicated in human breast cancer transcriptional response. Here we show that Gpr176 is N-glycosylated. Peptide-N-glycosidase treatment of mouse hypothalamus extracts revealed that endogenous Gpr176 undergoes N-glycosylation. Using a heterologous expression system, we show that N-glycosylation occurs at four conserved asparagine residues in the N-terminal region of Gpr176. Deficient N-glycosylation due to mutation of these residues reduced the protein expression of Gpr176. At the molecular function level, Gpr176 has constitutive, agonist-independent activity that leads to reduced cAMP synthesis. Although deficient N-glycosylation did not compromise this intrinsic activity, the resultant reduction in protein expression was accompanied by attenuation of cAMP-repressive activity in the cells. We also demonstrate that human GPR176 is N-glycosylated. Importantly, missense variations in the conserved N-glycosylation sites of human GPR176 (rs1473415441; rs761894953) affected N-glycosylation and thereby attenuated protein expression and cAMP-repressive activity in the cells. We show that N-glycosylation is a prerequisite for the efficient protein expression of functional Gpr176/GPR176

    Craniofacial and dental characteristics of three Japanese individuals with genetically diagnosed SATB2-associated syndrome

    Full text link
    Craniofacial defects are one of the most frequent phenotypes in syndromic diseases. More than 30% of syndromic diseases are associated with craniofacial defects, which are important for the precise diagnosis of systemic diseases. Special AT-rich sequence-binding protein 2 (SATB2)-associated syndrome (SAS) is a rare syndromic disease associated with a wide variety of phenotypes, including intellectual disability and craniofacial defects. Among them, dental anomalies are the most frequently observed phenotype and thus becomes an important diagnostic criterion for SAS. In this report, we demonstrate three Japanese cases of genetically diagnosed SAS with detailed craniofacial phenotypes. The cases showed multiple dental problems, which have been previously reported to be linked to SAS, including abnormal crown morphologies and pulp stones. One case showed a characteristic enamel pearl at the root furcation. These phenotypes add new insights for differentiating SAS from other disorders.This is the peer reviewed version of the following article: Hiroshi Kurosaka, Sayuri Yamamoto, Kyoko Hirasawa et al., "Craniofacial and dental characteristics of three Japanese individuals with genetically diagnosed SATB2-associated syndrome", American Journal of Medical Genetics, Part A, May 2023, which has been published in final form at https://doi.org/10.1002/ajmg.a.63225. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited
    corecore