44 research outputs found

    Electron cyclotron current drive efficiency in general tokamak geometry

    Get PDF
    Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves

    SciDAC - Center for Plasma Edge Simulation - General Atomics Support of NYU Collaborations

    Get PDF
    Methods for implementing Coulomb collisions in particle codes were studied and developed. At first, a lattice-Boltzmann method seemed promising. After considering this in more detail, it was found not to be efficient enough. A method was then sought for implementing collisional effects as changes in particle weights, instead of changes in velocities. Although this may eventually be done, it was decided that a Langevin method would be more straightforward to develop, since it was possible to build on previous work. The rest of the contract period was spent developing the Langevin method, which ultimately resulted in a published paper, in April 2008 [F.L. Hinton, Phys. Plasma 15, 042501 (2008)]

    Introduction to Drift Wave Turbulence Modelling

    No full text
    corecore