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ABSTRACT 

Green’s-function techniques are used to calculate electron cyclotron current drive 

(ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully 

relativistic electron dynamics is employed in the theoretical formulation. The high- 

velocity collision model is used to model Coulomb collisions and a simplified quasi- 

linear rf diffusion operator describes wave-particle interactions. The approximate 

analytic solutions which are benchmarked with a widely used ECCD model, facilitate 

time-dependent simulations of tokamak operational scenarios using the non-inductive 

current drive of electron cyclotron waves. 

d 
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I. INTRODUCTION 

Electron cyclotron current drive (ECCD) is the generation of electrical currents in 

plasmas by the application of electromagnetic waves at frequencies near the electron 

cyclotron frequency or its low harmonics. Seminal discussions of the physics of ECCD 

were first made by Ohkawal and Fisch and Boozer2. Subsequent theoretical 

investigations3-12 of ECCD were mostly specific to tokamak geometry and elaborated on 

the reduction of the current drive efficiency which originates from the trapped electron 

effect, the so-called Ohkawa effect. The effects of relativistic mass shift on carrier 

dynamics and the cyclotron resonance condition were also shown theoretically to be 

important in determining the ECCD efficiency and p r ~ f i l e ' ~ . ~ ~ .  In tokamaks ECCD can 

sustain plasma current noninductively in order to reduce the dependence on the ohmic 

heating coil. More significantly, recent research has shown that optimization of the 

current profile can bring benefits in plasma stability and confinement15 to the extent that 

economically attractive steady-state operation of tokamak reactors appears to be possible. 

ECCD is a strong candidate for current profile control because it can be highly localized 

near the cyclotron resonance in the plasma. This property also makes ECCD useful for 

stabilizing various magnetohydrodynamic (MHD) instabilities, particularly the 

neoclassical tearing modes16.17, which may limit the achievable plasma pressure. 

Quantitative measurements of the properties of ECCD have been made in the 

DIII-D tokamakl8.19. These experiments cover a broad range of plasma and wave 

parameters predicted to be important in influencing the current drive efficiency, like 

density ne ,  temperature Te, normalized minor radius p, poloidal angle (referring to the 

location of the current drive on a flux surface), and parallel index of refraction rill. 
Reference 18 shows that over the entire parameter range tested agreement between the 

experimental measurement of ECCD and the results of Fokker-Planck calculations of the 

CQL3D code20 is within experimental uncertainty. This appears to validate the basic 

ingredients in the physical mechanism of ECCD: the Fisch-Boozer current drive 

mechanism2, the Ohkawa effect1, and the relativistic effects13914. 
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Although the Fokker-Planck calculations are comprehensive for modeling ECCD, 

they are time consuming and not convenient for comprehensive modeling of tokamak 

systems, particularly for time-dependent modeling of operational scenarios. For this 

purpose, it is desirable to have a simple and relatively accurate method for calculating 

ECCD efficiency. In the widely used ray tracing code TORAY-GA21-M, a simplified 

model developed by Cohen11 is used to evaluate ECCD. This model is based on the 

Green’s function formulation of rf current drive efficiency25>26,5. A semi-relativistic 

response function is used to calculate the current drive. The slowing-down part of the 

high-velocity collision operator is approximated by an expansion in T/mu2, where u is 

the momentum per unit mass, in order to make the response function for current drive 

separable in energy and pitch angle. The magnetic well is approximated as a square well 

in order to obtain an analytic solution. The momentum dependence of the response 

function thus obtained is judiciously modified, based on Fisch’s relativistic theory13 for 

straight-field-line magnetic geometry, to account for relativistic effects. 

In the present work fully relativistic electron dynamics are used, starting with 

Fisch’s high-velocity collision model13. An approximation based on the Legendre 

expansion of the pitch angle E = v,,/v is made to the slowing-down part of the collision 

operator to make the response function separable in energy w and the pitch angle variable 

h = plw, where p is the magnetic moment, and w is the particle energy. The resulting 

mathematical problem may be solved analytically. The solution is shown to be exact in 

the Lorentz gas limit (Zeff >> 1) for general tokamak equilibria, and it recovers Fisch’s 

current drive result13 in the limit of large aspect ratio. 

The discussion starts with a brief review in Section I1 of the Green’s function 

formulation for rf current drive in general tokamak geometry. We follow the work by 

Antonsen and Chu26. Their formulation is applicable to all collisionality regimes. A 

natural local dimensionless current drive efficiency appropriate to general tokamak 

geometry is introduced. Then it is expressed in terms of the integrals involving the 

rf-induced flux in velocity space and the response function introduced in the Green’s 

function formulation. In Section I11 the bounce-averaged equation for the response 

function in the low collisionality regime is derived. (The low collisionality regime is most 

relevant for ECCD in present-day and future devices.) In Section IV the relativistic 
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high-velocity collision model13 is used and the corresponding bounce-averaged equation 

is solved approximately to obtain a semi-analytic response function for the driven current 

in general tokamak geometry. In Section V the theoretical formulation is applied to 

calculate the ECCD efficiency. The results are compared systematically to those obtained 

using Cohen’s modelll. A few practical cases using the DIII-D geometry are also 

presented in which the full ray-tracing is applied. Finally, a summary of the paper is 

given in Sec. VI. In Appendix A, we present an interpolation formula for the angular part 

of the response function, which simplifies the numerical evaluation of ECCD efficiency. 

In Appendix B, we consider the relation between the local dimensionless current drive 

efficiency defined in this paper and the current drive figure of merit used by 

experimentalists 18,1933. 
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II. GREEN'S-FUNCTION FORMULATION FOR 
RF CURRENT DRIVE IN TOROIDAL GEOMETRY 

By using the Green's-function formulation to evaluate current drive efficiency, we 

are assuming that the electron distribution function is close enough to the Maxwellian 

distribution, i.e., f = fM , for the Coulomb collision operator to be linearized, and that the 

rf power density is not too high such that interaction between the waves and electrons can 

be described by S ,  ( fM) ,  where S ,  denotes the rf-induced quasi-linear diffusion 

operator in velocity space. Ignoring the small cross-field drifts and finite banana width, 

the perturbed distribution function fi satisfies the linearized Fokker-Planck equation27: 

e where C, denotes the linearized Coulomb collision operator and fi is considered as a 

function of particle energy w, magnetic moment p, and a poloidal angular variable 8 at 

a given flux surface, which could be labeled by the poloidal flux function v . Within the 

small gyro-radius expansion scheme which we adopt here, the rf driven current is parallel 

to the local magnetic field, i.e., jrf = jllB/B = j16,  with 

P '  

-.. .... 

where dT is the volume element in velocity space. By integrating both sides of Eq. (1) 

and using the assumption of axisymmetry, it is straightforward to show that J,l has a 

poloidal angular dependence of 
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where y(q)  is a function of I) only. Hence, j l l /B  is independent of the poloidal angle 8, 

and can be written as 

Here the notation (. . .) denotes the flux-surface average, 

dl P 

"P 

dl P 
(...) = 7 

"P 

f- ... 

f- 

where d!, is the line element along the poloidal circumference and Bp the poloidal 

magnetic field. 

To evaluate j l l /B,  it is most convenient to use the Green's-function techniques. 

Consider the response function for the driven current x , which satisfies the equation: 

where C, e+ is the adjoint collision operator; C:'x = f M  -1 C e ( d M )  e and 

Note that in the equation for the response function (Eq. (6)) we use a different 

normalization constant from that of Antonsen and Chu26. 
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Making use of Eqs. (1)-(7), we express jll/ B in terms of x and Srf ( fM) ,  

Y.R. Lin-Liu, et al. 

According to Eq. (l), the absorbed rf power density in the linear regime can be 

written as 

Q = (ra wsrf (fM )) ' (9) 

where w is the particle energy. 

Motivated by the introduction of a new dimensionless current drive figure of merit 

c by experimentalists28318, we define the corresponding local current drive efficiency as 

where is the permittivity of free space, ne and Te are, respectively, the local electron 

density and temperature. Using the fact that (jl,) = (jll/B)(B) and Eqs. (8)-(9), we write 

c* as 

where lnA is the Coulomb logarithm, B,,, is the maximum of B on the flux surface, 

and the dimensionless response function is defined as 2 = v ~ ~ ( B , ~ , , / v ~ ) x  with 

") veO = ( e  4 n , l n A ) / ( 4 z ~ ~ r n  ve and ve E ,/(2Te/rn). Note that the formulation presented 

here is applicable for an arbitrary collisionality regime and in general tokamak geometry. 

With Eq. (1 I ) ,  the problem of evaluating the current drive efficiency is reduced to 
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performing integrals involving the wave-induced flux, S,, ( fM) ,  and the response 

function x . Note that there is no dependence on S ,  (fM) in x . Once determined, it can 

be used to calculate * for any given S,(fM). That is one of the advantages of the 

Green's-function formulation. 
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111. THE BOUNCE-AVERAGED RESPONSE FUNCTION 

To obtain the response function x , we are required to solve Eq. (6). As it stands, 

the numerical problem involved is three-dimensional; at a given flux surface, x is a 

function of particle energy w , magnetic moment p , and poloidal angle 0,. To simplify 

the numerical problem involved, the assumption is often invoked that the effective 

collisional frequency is much smaller than the bounce frequency such that the trapped 

electrons are allowed to complete the banana orbits at all energies. This low-collisionality 

assumption is justified for reactor-grade tokamak plasmas in which the electron 

temperature is sufficiently high or the velocity of the resonant electrons is much larger 

than the thermal velocity, so that the influence of collisionality on the current drive 

efficiency can be neglected. As for the parameter regimes of the present-day experiments, 

it is generally believed that collisionality corrections on the current drive efficiency 

would be only significant in the case of strong trapping29. Nonetheless, there is no 

systematic quantitative study of the effects. 

In the low-collisionality regime (the “banana” limit), we consider the ratio of the 

effective collision frequency to the bounce frequency to be a small parameter, 

( veo/~))/Wb e< 1, where E is the inverse aspect ratio. Assume that x has an expansion in 

this small parameter, i.e., x = xo +x, +... . According to Eq. (6), the leading order 

response function xo satisfies vllb * Vxo = 0 .  The equation for x1 yields the solubility 

condition, 

h 
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where d t =  B B dtP. Note that the right-hand side of Eq. (12) is zero for trapped 

electrons. This implies that xo = 0 for trapped electrons. For passing electrons, Eq. (12) 

can be written as 

( I  P J  

by using the definition of = vII /v  and the definition of the flux-surface average 

(Eq. (5 ) ) .  In the following, we will limit our discussions to the banana regime, and in 

referring to xo the subscript 0 will be suppressed. 
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IV. RESPONSE FUNCTION IN FISCH'S RELATIVISTIC 
HIGH-VELOCITY COLLISION MODEL 

In this section, we consider Fisch's relativistic high-velocity model13 and solve the 

corresponding bounce-averaged equation for the response function x [Eq. (13)]. We will 

make an approximation on the slowing-down part of the collision operator by keeping 

only the first term of its Legendre expansion in the pitch angle variable E, l2,30. Using this 

approximation, we obtain an analytic solution for x separable in energy and pitch-angle 

variables in the banana regime. 

We use relativistic dynamics to describe the motion of electrons. Let Ei denote the 

momentum per unit mass, Le., u' = p'/m = yC with y = ,/l + ( u / c ) ~  . The kinetic energy of 

a relativistic electron is given by w =(y -1)mc2 and the magnetic moment is 

= mul I 2 B .  The collision operator in Fisch's relativistic high-velocity model can be 2 

written as 

Here L is the pitch-angle scattering operator, 

The velocity dependent pitch-angle scattering rates due to electron-ion and electron- 

electron collisions are 

and 
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where u = v, = ,/-. The last term on the right-hand side of Eq. (14) represents the 

slowing-down effects due to electron-electron collisions and 
e L  

The corresponding adjoint collision operator is 

Note that by setting y --j 1 in  Eqs. (14)-(19) one recovers the standard 

non-relativistic high-velocity collision model. 

To make progress in obtaining an analytic solution for Eq. (13), we approximate the 

slowing-down part of the collision operator by keeping only the 1st term of its Legendre 

expansion in Ej : 

where p e ( x )  is the Legendre polynomial of order ! and 

To facilitate calculations in the banana regime, we define a new pitch-angle 

variable h , 

which is also a constant of motion. At a given poloidal angle, passing electrons have 

values of h i n  the range of 0 I; h < 1, and for trapped electrons 1s h < B,nax,B. 
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Considering u and h as the two independent variables, the velocity-space volume 

element is transformed to 

and IEl= ( 1  - hB/Bm,,)”2, which is considered a function of h and 8,. We write the 

bounce averaged pitch-angle scattering operator using 

Substituting Eq. (19) into Eq. (13), using the approximation specified in 

Eqs. (20)-(21), and rewriting the equation for x , we obtain 

with 

and 0’ = sgn(ul\) for passing electrons; x = 0 for trapped electrons. It follows that x is 

proportional to s g n ( ~ , ~ )  for passing electrons, and the fact that 1% is the only term in 

Eq. (25) having an explicit dependence on h suggests 2 be separable in variables u and 

h .  We write the solution of Eq. (25) as 

where the function H ( h )  satisfies the equation 

E H ( h ) = - l  , 

c 

GENERAL ATOMICS PROJECT A24257 13 



Y.R. Lin-Liu, et al. 
ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY 

IN GENERAL TOKAMAK GEOMETRY 

for 0 < h< 1 and vanishes for h > 1.  Eq. (28) and the regular boundary condition at 

h = 0 uniquely specify the function H ( h )  : 

where 0(x) is the Heaviside step function such that 0(x) = O f o r x <  0 and 

0(x) = 1 for x > 0. Substituting Eqs. (27)-(29) into Eq. (25) and Eq. (26)' we find 

with 

The quantity f,(& = 1 - f,) is the well-known effective circulating (trapped) 

particle fraction in the neoclassical transport t h e ~ r y ~ l , ~ ~ .  The equation for F (Eq. (31)) is 

readily solved with the boundary condition F(0)  = 0. The solution is 

1 +J1- 
1 + J1 + ( 

P '  (33) 

where 

Several Remarks on the results obtained so far are in order. We note that the 

given in Eqs. (27)' (29)' and (33) is an approximate (dimensionless) response function 
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solution for the relativistic high-velocity collision model. For any tokamak equilibrium it 

is exact in the Lorentz-gas limit (Zeff >> I ) ,  in which the pitch-angle scattering process 

dominates. We can recover Fisch’s results13 by considering the limit of large aspect ratio: 

E - 0 ,  B/B,n,, - 1, and fc - 1.  Finally, by considering the non-relativistic limit and 

letting c + a in Eq. (33)’ we find 

This result, which was first obtained by Taguchi12, indicates that besides the 

relativistic effects the trapping effects can also alter the canonical Zeff dependence 

(l/(Zeff + 5)) of the current drive efficiency in the standard high-velocity collision 

model. 
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V. ECCD EFFICIENCY 

Y.R. Lin-Liu, et al. 

The theoretical formulation of rf current drive discussed thus far is not specific to 

any particular wave provided the wave does not significantly alter the electron 

distribution. In this section, we specialize to the case of ECCD. Following Cohen’l, we 

will use a simplified quasi-linear diffusion operator for EC waves. The wave-induced 

flux Srf(fM) and the response function obtained in Sec. IV are used in Eq. (11) for 

calculating the ECCD efficiency. 

The simplified quasi-linear diffusion operator for EC waves is 

Here XR denotes the spatial location of wave deposition. The differential operator 

ii in velocity space is given as 

- a kll a A = - + - -  
aw co aql ’ 

where co and kll are, respectively, the frequency and the parallel wave number of the EC 

wave; w and pII are regarded as the two independent velocity-space variables. The local 

cyclotron frequency at ZR is denoted by coC = eB/m and l is the cyclotron harmonic 

number. Do is the quasi-linear diffusion coefficient. We will  consider the small 

gyro-radius limit (k,p e< 1) as has been done in Ref. I I and approximate Do by 

where E- is the right-hand polarized wave electric field and k ,  is the perpendicular 

wave number. 

c 
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Substituting Eqs. (35)-(36) into Eq. (1 1) and performing an integration by part in 

velocity space as well as the flux-surface average, we obtain 

In the process of obtaining Eq. (38), we have also used the fact that i w  = 1,  

in terms of fM c( exp(-w/T,) , and ifM = -fM/c. To evaluate mueAk, 2 -  we express 

partial derivatives with respect to u and h . Thus, 

2 
'maxu1 

Bu 
where h = 2 and B is the magnitude of the local magnetic field at iR. Now 

consider the integration over the velocity-space variables. Note that the volume element 

in velocity space can be written as dF=2n;uLduLdull=2n;c ydydql and 

S(w - kllvll - &oC/y) = y6(yo - kllull - toc). Substituting Eq. (37)  into Eq. (38) and 

performing the integration over yI, we find 

2 

Note that in Eq. (40) yI and y are related by the cyclotron resonance condition, 

yco - '$lull - !cot = 0.  Hence, both yI and uL are considered as functions of y : 

y o  - @cot -.(-' Y - Y  
kl I nll I 

71 = 

U L  2 = c  2 2  (y  - l ) - q  2 2  = c  2 y - 1 -  , 
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where y = !co,/co and nll = kllc/co, the parallel index of refraction. The integrations in 

Eq. (40) are supposed to be taken from y = 1 to 00.  Owing to the cyclotron resonance 

condition, they could be restricted to the range from y mi,l to y max. The values of y min 

and y ,Tlilx are determined with given nll and y by setting the left-hand-side of Eq. (42) to 

zero: 

/ \ 2  

(43 ) 

Using Eqs. (39)-(43) and the functions F ( u )  and H ( h )  obtained in the last section, 

we can calculate the current drive efficiency I;* as defined in Eq. (1 1). The efficiency <* 
determined here is a function of parallel index of refraction nI1,  cyclotron harmonic 

number 1 ,  ratio of the cyclotron frequency to the wave frequency (or y 3 eCo,/Co), local 

electron temperature Tk, effective ion charge Zeff, as well as the MHD equilibrium 

properties of the flux surface. The equilibrium information needed are the poloidal 

angular dependencies of the magnetic field B(BP J, the poloidal magnetic field Bp(O,), 

and &,/d0,. Owing to the assumption of small gyro-radius and the simplified quasi- 

linear operator used here, there is no explicit dependence of I; on the polarization state 

of the EC wave. We note in passing that an interpolation formula which simplifies 

evaluation of H ( h )  for general tokamak geometry is presented in Appendix A. 

* 

The dimensionless current drive efficiency of Eq. (10) can be compared with 

experimentally measurable quantities by setting Q = P/V and I = (&)A , where V and A 

are, respectively, the volume and the cross sectional area between flux surfaces where the 

absorption takes place, P is the total power absorbed, and I is the total driven toroidal 

current. Using the approximate relation between V and A (V = 21tRpA, where R is the 

major radius of the plasma), one can see <* defined in Eq. (10) is directly related to the 

dimensionless efficiency used by  experimentalist^^^^^^^^^: 

P 

They differ only 

geometric factors. 

by geometric factors. In Appendix B, we derive the relevant 

* 
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The theoretical formulation developed so far for calculating the ECCD efficiency is 

not specialized to any specific flux surface geometry. In order to benchmark our results 

with Cohen’s square-well model I ,  we adopt the simple circular model equilibrium with 

toroidal field B = B,/(l + &cosBp) and poloidal field B, = B /(1+ ecosBp), where E is 
PO 

the inverse aspect ratio of the flux surface of interest, BO and B are two constants. For PO 
this model equilibrium, both < and < are functions of the electron temperature T,, the 

parallel wave number n I I ,  the effective ionic charge Z,, , the parameter y = lco,/co, the 

inverse aspect ratio E ,  and the poloidal angle B p  where the absorption takes place. The 

function < = <(T,, nII,  Zeff, y, E ,  Bp) can be plotted as a function of y with the other 

arguments held fixed, as shown in some example cases in Fig. 1. The realized efficiency 

depends on the value of y at which the power is absorbed, and this determination requires 

tracing of rays from the antenna along with calculation of the power absorbed along the 

ray. Figure 1 also shows the dimensionless efficiency calculated using the model 

developed in Ref. 1 1 .  For the parameter ranges examined, the relatively small differences 

between the models shown in Fig. 1 are typical. 

* 
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nll=[0.700,0.600,0.500,0.400,0.300,0.200] 

Fig. 1. Dimensionless efficiency 5; defined in Eq. 44, as a function 
of y = l LO,/W, evaluated for  ne = 2 x  m 3 ,  T, = 2 keV, 
R =  1.76m, E =0.2 (corresponding to normalized minor radius of 
O S ) ,  and Zeff = 1.6, for (a) 6, = 165 degrees (near high-field side of 
the flux surface), (b) 8, =90 degrees, and (c) 8, = 15 degrees. In 
each case the efficiency is plotted for the specified values of rill. 
The solid lines represent the results from Eqs. (40-43) and the 
dotted lines illustrate the results from the model described in Ref. 
11 for comparison. 
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VI. SUMMARY 

This paper describes the formulation and development of the most complete linear 

electron cyclotron current drive model for tokamaks. A previously developed model1 l, 

which has been extensively used in transport modeling and comparison with experiments, 

uses a weakly relativistic expansion of the Coulomb collision operator. The magnetic 

geometry is also simplified by use of a square-well model to obtain an analytic solution. 

While the model has had good success in validation against experiments, the accuracy of 

the approximations has never been checked against more complete models. In the present 

work, fully relativistic electron dynamics are used. Recognizing the similarity between 

this problem and neoclassical transport, an approximation based on Legendre expansion 

commonly used in the latter is adopted to again arrive at an analytic solution, crucial in 

terms of speed and accuracy for coupling the current drive model to ray-tracing for 

time-dependent transport simulations. The analytic solution is shown to be exact in the 

Lorentz gas limit for general tokamak equilibrium geometry. In comparing with the 

Cohen model, relatively small differences between the two models have been found in 

the cases run so far. 

Finally, it should be mentioned that the linear ECCD model predicts accurately the 

scaling of the current drive efficiency for all the relevant plasma parameters. However, it 

does not account for the presence of an Ohmic electric field and the synergistic 

contribution of the electric field to ECCD. This effect is most important in present-day 

experiments in which the current drive has not reached steady-state condition. This 

physics has been modeled satisfactorily by quasilinear Fokker-Planck codes. For future 

long-pulse or steady-state tokamaks, the linear ECCD model as described in this paper is 

expected to provide an accurate model both qualitatively and quantitatively. 
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APPENDIX A: AN INTERPOLATION FORMULA FOR qa) 

In this Appendix, we consider an interpolation formula, which simplifies evaluation 

of the function H ( h )  defined in Eq. (29) of the main text, 

O(h-1) dh’ 
H ( k )  = 

2 {((I - h’h)’12) ’ 

where h 3 B/ Bmax . Let’s write 

(1 - = (1 - h(h) - h( h - (h)))1’2 

In terms of the new variable s 3 h(1- (h))l(l  - h(h)), g is given as 

g =  l-s- [ 
Note that for h = 0, s = 0 and h = 1 ,  s = 1 .  Also, 0 < h < 1. Hence, both g and (g) can 

be expressed as a power series of s for s e 1 ,  

GENERAL ATOMlCS PROJECT A24257 A- 1 



Y.R. Lirz-Liu, et al. 
ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY 

IN GENERAL TOKAMAK GEOMETRY 

To carry out the higher order terms in s for evaluating (g) may not be particularly 

fruitful. Here we propose an interpolation formula, 

( g )  - [ 1 + s2(c2(1 - 5 2 )  + c4s2)]1/2 . 

Here the coefficient c2 is determined by Eq. (A.4) in the limit of s<< 1 and the 

coefficient c4 adjusted to give the exact value at the limit s = 1 .  This leads to 

(( 1 - h)' /2)2 
c4 = - I  . 

(1 - (4) 

Three flux-surface averaged quantities are needed for the interpolation formula. They are 

( h ) ,  (h2) ,  and ((1 - h)'"). 

Expressing h in terms of s and after some straightforward algebra, we find that for 

h <  1, 

dH I 1 1 

p . (A.9) H( h) = ; 1 (1 - ( h)Yl2; 
dz 

S(1 -(h)+ z(h))3'2[1 +z2(c2(l -z2)+c4z2)]'  

For the model circular equilibrium we have considered in the main text, i.e., 

B, B, 1 / I  + E cosep and de, de , the flux-surface average of a quantity is given by P 

A-2 

(.(ep)) = i7dOp(1 + E ~ O S B ~ ) A ( O , )  . 
0 
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The three flux-surface averaged quantities required in the interpolation formula can 

be explicitly expressed in terms of E : 

( h ) =  I - &  , (A. I I )  

(A. 12) 

(A. 13) 

With Eqs. (A.II)-(A.I3), the coefficients c2 and c4 can also be expressed as explicit 

functions of E .  In the limit of E - 0 ,  c2 -.+ -118 and c4 -.+ 8 / x 2  - 1.  By comparison 

with the numerical results obtained from the exact formulas, we found that the 

interpolation formulas are quite accurate for the model equilibrium with 0 < E < 0.9. 
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APPENDIX 6: GEOMETRIC FACTORS RELATING c* AND 

In this Appendix, we derive the geometric factors relating <* defined in Eq. (10) 

and introduced in Eq. (44) of the main text. 

In general tokamak geometry, the magnetic field is given by 

i = B & + V Q , x V V  , 03.1) 

where Q, is the toroidal angle and V is the poloidal flux function. The volume element V 

between the flux surfaces labeled by and 9 + d q  can be written as 

The cross sectional area A between the two flux surfaces is 

In writing out Eq. (B.3), we have used the definition of a flux-surface average given in 

Eq. (5) of the main text. Using the facts that the driven current density is parallel to the 

local magnetic field, i.e., 7 = j l l i / B ,  and j l l /B is a function of V only, we write the 

driven toroidal current I between the two flux surfaces as 

Hence, 

V=2n(--) 1 - I  A 
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By substituting Eqs. (B.5)-(B.6) and the definition of absorbed power density Q = P/ V 

into Eq. (44) of the main text, we find 

The geometric factors involved pertain to the flux surface of interest. In the limit of large 

aspect ratio ( E  --+ o >, 5 = <*. 

R-2 GENERAL ATOMICS REPORT A24257 


