12 research outputs found

    mTORC2 Promotes Tumorigenesis via Lipid Synthesis

    Get PDF
    Dysregulated mammalian target of rapamycin (mTOR) promotes cancer, but underlying mechanisms are poorly understood. We describe an mTOR-driven mouse model that displays hepatosteatosis progressing to hepatocellular carcinoma (HCC). Longitudinal proteomic, lipidomics, and metabolomic analyses revealed that hepatic mTORC2 promotes de novo fatty acid and lipid synthesis, leading to steatosis and tumor devel- opment. In particular, mTORC2 stimulated sphingolipid (glucosylceramide) and glycerophospholipid (cardi- olipin) synthesis. Inhibition of fatty acid or sphingolipid synthesis prevented tumor development, indicating a causal effect in tumorigenesis. Increased levels of cardiolipin were associated with tubular mitochondria and enhanced oxidative phosphorylation. Furthermore, increased lipogenesis correlated with elevated mTORC2 activity and HCC in human patients. Thus, mTORC2 promotes cancer via formation of lipids essential for growth and energy production

    Elevated arginine levels in liver tumors promote metabolic reprogramming and tumor growth

    Get PDF
    Arginine auxotropy, due to reduced expression of urea cycle genes, is common in cancer. However, little is known about the levels of arginine in these cancers. Here, we report that arginine levels are elevated in hepatocellular carcinoma (HCC) despite reduced expression of urea cycle enzymes. Liver tumors accumulate high levels specifically of arginine via increased uptake and, more importantly, via suppression of arginine-to-polyamine conversion due to reduced arginase 1 (ARG1) and agmatinase (AGMAT) expression. Furthermore, the high levels of arginine are required for tumor growth. Mechanistically, high levels of arginine promote tumorigenesis via transcriptional regulation of metabolic genes, including upregulation of asparagine synthetase (ASNS). ASNS-derived asparagine further enhances arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a novel second messenger-like molecule that reprograms metabolism to promote tumor growth

    Syrosingopine sensitizes cancer cells to killing by metformin

    Get PDF
    We report that the anticancer activity of the widely used diabetic drug metformin is strongly potentiated by syrosingopine. Synthetic lethality elicited by combining the two drugs is synergistic and specific to transformed cells. This effect is unrelated to syrosingopine's known role as an inhibitor of the vesicular monoamine transporters. Syrosingopine binds to the glycolytic enzyme α-enolase in vitro, and the expression of the γ-enolase isoform correlates with nonresponsiveness to the drug combination. Syrosingopine sensitized cancer cells to metformin and its more potent derivative phenformin far below the individual toxic threshold of each compound. Thus, combining syrosingopine and codrugs is a promising therapeutic strategy for clinical application for the treatment of cancer

    LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function

    Get PDF
    Autophagy perturbation represents an emerging therapeutic strategy in cancer. Although LATS1 and LATS2 kinases, core components of the mammalian Hippo pathway, have been shown to exert tumor suppressive activities, here we report a pro-survival role of LATS1 but not LATS2 in hepatocellular carcinoma (HCC) cells. Specifically, LATS1 restricts lethal autophagy in HCC cells induced by sorafenib, the standard of care for advanced HCC patients. Notably, autophagy regulation by LATS1 is independent of its kinase activity. Instead, LATS1 stabilizes the autophagy core-machinery component Beclin-1 by promoting K27-linked ubiquitination at lysine residues K32 and K263 on Beclin-1. Consequently, ubiquitination of Beclin-1 negatively regulates autophagy by promoting inactive dimer formation of Beclin-1. Our study highlights a functional diversity between LATS1 and LATS2, and uncovers a scaffolding role of LATS1 in mediating a cross-talk between the Hippo signaling pathway and autophagy

    The protein histidine phosphatase LHPP is a tumour suppressor

    Get PDF
    Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic

    The Opposing Actions of Target of Rapamycin and AMP-Activated Protein Kinase in Cell Growth Control

    No full text
    Cell growth is a highly regulated, plastic process. Its control involves balancing positive regulation of anabolic processes with negative regulation of catabolic processes. Although target of rapamycin (TOR) is a major promoter of growth in response to nutrients and growth factors, AMP-activated protein kinase (AMPK) suppresses anabolic processes in response to energy stress. Both TOR and AMPK are conserved throughout eukaryotic evolution. Here, we review the fundamentally important roles of these two kinases in the regulation of cell growth with particular emphasis on their mutually antagonistic signaling

    Dual Inhibition of the Lactate Transporters MCT1 and MCT4 Is Synthetic Lethal with Metformin due to NAD+ Depletion in Cancer Cells

    Get PDF
    Summary: Highly glycolytic cancer cells prevent intracellular acidification by excreting the glycolytic end-products lactate and H+ via the monocarboxylate transporters 1 (MCT1) and 4 (MCT4). We report that syrosingopine, an anti-hypertensive drug, is a dual MCT1 and MCT4 inhibitor (with 60-fold higher potency on MCT4) that prevents lactate and H+ efflux. Syrosingopine elicits synthetic lethality with metformin, an inhibitor of mitochondrial NADH dehydrogenase. NAD+, required for the ATP-generating steps of glycolysis, is regenerated from NADH by mitochondrial NADH dehydrogenase or lactate dehydrogenase. Syrosingopine treatment leads to high intracellular lactate levels and thereby end-product inhibition of lactate dehydrogenase. The loss of NAD+ regeneration capacity due to combined metformin and syrosingopine treatment results in glycolytic blockade, leading to ATP depletion and cell death. Accordingly, ATP levels can be partly restored by exogenously provided NAD+, the NAD precursor nicotinamide mononucleotide (NMN), or vitamin K2. Thus, pharmacological inhibition of MCT1 and MCT4 combined with metformin treatment is a potential cancer therapy. : Benjamin et al. show that the clinical drug syrosingopine potently inhibits the lactate transporters MCT1 and MCT4 and is thus a clinically relevant MCT4 inhibitor. Intracellular lactate accumulation by syrosingopine elicits synthetic lethality with metformin and potentiates metformin’s anti-cancer efficacy. Keywords: cancer, metformin, syrosingopine, lactate, MCT1, MCT4, synthetic lethalit

    Identification of a novel AMPK-PEA15 axis in the anoikis-resistant growth of mammary cells

    No full text
    Introduction: Matrix detachment triggers anoikis, a form of apoptosis, in most normal epithelial cells, while acquisition of anoikis resistance is a prime requisite for solid tumor growth. Of note, recent studies have revealed that a small population of normal human mammary epithelial cells (HMECs) survive in suspension and generate multicellular spheroids termed `mammospheres'. Therefore, understanding how normal HMECs overcome anoikis may provide insights into breast cancer initiation and progression. Methods: Primary breast tissue-derived normal HMECs were grown as adherent monolayers or mammospheres. The status of AMP-activated protein kinase (AMPK) and PEA15 signaling was investigated by immunoblotting. Pharmacological agents and an RNA interference (RNAi) approach were employed to gauge their roles in mammosphere formation. Immunoprecipitation and in vitro kinase assays were undertaken to evaluate interactions between AMPK and PEA15. In vitro sphere formation and tumor xenograft assays were performed to understand their roles in tumorigenicity. Results: In this study, we show that mammosphere formation by normal HMECs is accompanied with an increase in AMPK activity. Inhibition or knockdown of AMPK impaired mammosphere formation. Concomitant with AMPK activation, we detected increased Ser(116) phosphorylation of PEA15, which promotes its anti-apoptotic functions. Inhibition or knockdown of AMPK impaired PEA15 Ser(116) phosphorylation and increased apoptosis. Knockdown of PEA15, or overexpression of the nonphosphorylatable S116A mutant of PEA15, also abrogated mammosphere formation. We further demonstrate that AMPK directly interacts with and phosphorylates PEA15 at Ser(116) residue, thus identifying PEA15 as a novel AMPK substrate. Together, these data revealed that AMPK activation facilitates mammosphere formation by inhibition of apoptosis, at least in part, through Ser(116) phosphorylation of PEA15. Since anoikis resistance plays a critical role in solid tumor growth, we investigated the relevance of these findings in the context of breast cancer. Significantly, we show that the AMPK-PEA15 axis plays an important role in the anchorage-independent growth of breast cancer cells both in vitro and in vivo. Conclusions: Our study identifies a novel AMPK-PEA15 signaling axis in the anchorage-independent growth of both normal and cancerous mammary epithelial cells, suggesting that breast cancer cells may employ mechanisms of anoikis resistance already inherent within a subset of normal HMECs. Thus, targeting the AMPK-PEA15 axis might prevent breast cancer dissemination and metastasis

    Multi-omics data integration reveals novel drug targets in hepatocellular carcinoma

    Get PDF
    Background Genetic aberrations in hepatocellular carcinoma (HCC) are well known, but the functional consequences of such aberrations remain poorly understood. Results Here, we explored the effect of defined genetic changes on the transcriptome, proteome and phosphoproteome in twelve tumors from an mTOR-driven hepatocellular carcinoma mouse model. Using Network-based Integration of multi-omiCS data (NetICS), we detected 74 ‘mediators’ that relay via molecular interactions the effects of genetic and miRNA expression changes. The detected mediators account for the effects of oncogenic mTOR signaling on the transcriptome, proteome and phosphoproteome. We confirmed the dysregulation of the mediators YAP1, GRB2, SIRT1, HDAC4 and LIS1 in human HCC. Conclusions This study suggests that targeting pathways such as YAP1 or GRB2 signaling and pathways regulating global histone acetylation could be beneficial in treating HCC with hyperactive mTOR signaling
    corecore