1,265 research outputs found

    Hypospadias and endocrine disruption: is there a connection?

    Get PDF
    Hypospadias is one of the most common congenital anomalies in the United States, occurring in approximately 1 in 250 newborns or roughly 1 in 125 live male births. It is the result of arrested development of the urethra, foreskin, and ventral surface of the penis where the urethral opening may be anywhere along the shaft, within the scrotum, or in the perineum. The only treatment is surgery. Thus, prevention is imperative. To accomplish this, it is necessary to determine the etiology of hypospadias, the majority of which have been classified as idiopathic. In this paper we briefly describe the normal development of the male external genitalia and review the prevalence, etiology, risk factors, and epidemiology of hypospadias. The majority of hypospadias are believed to have a multifactorial etiology, although a small percentage do result from single gene mutations. Recent findings suggest that some hypospadias could be the result of disrupted gene expression. Discoveries about the antiandrogenic mechanisms of action of some contemporary-use chemicals have provided new knowledge about the organization and development of the urogenital system and may provide additional insight into the etiology of hypospadias and direction for prevention

    American Digital Election Infrastructure: Policy, Risks, Options

    Full text link
    Why is US digital election infrastructure (DEI) in a vulnerable state and what are the possible options to better secure it? To answer these questions systematically, federal policy and current DEI are analyzed through a risk management lens, including both elite and democratic models of risk management. This analysis suggests that DEI is at risk because federal policy currently enables states to use Direct-Recording Electronic (DRE) voting machines without a paper trail and allows states to manage their own risk environment with respect to digital voter registration databases (VRDs). This in turn produces significant variance in outcomes in levels of cyber security and priority of VRD governance. These factors combine to present serious vulnerabilities that could be exploited in a targeted attack during a Presidential election to disastrous consequence. As a result, policy options and potential technical improvements to DEI should be explored

    Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations

    Get PDF
    To enable the processing of chemical gradients, chemotactic bacteria possess large arrays of transmembrane chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW, organized as coupled core-signaling units (CSU). Despite decades of study, important questions surrounding the molecular mechanisms of sensory signal transduction remain unresolved, owing especially to the lack of a high-resolution CSU structure. Here, we use cryo-electron tomography and sub-tomogram averaging to determine a structure of the Escherichia coli CSU at sub-nanometer resolution. Based on our experimental data, we use molecular simulations to construct an atomistic model of the CSU, enabling a detailed characterization of CheA conformational dynamics in its native structural context. We identify multiple, distinct conformations of the critical P4 domain as well as asymmetries in the localization of the P3 bundle, offering several novel insights into the CheA signaling mechanism

    Production of Sactipeptides in Escherichia coli: Probing the Substrate Promiscuity of Subtilosin A Biosynthesis

    Get PDF
    Sactipeptides are peptide-derived natural products that are processed by remarkable, radical-mediated cysteine sulfur to α-carbon coupling reactions. The resulting sactionine thioether linkages give rise to the unique defined structures and concomitant biological activities of sactipeptides. An E. coli heterologous expression system, based on the biosynthesis of one such sactipeptide, subtilosin A, is described and this expression system is exploited to probe the promiscuity of the subtilosin A sactionine bond-forming enzyme, AlbA. These efforts allowed the facile expression and isolation of a small library of mutant sactipeptides based on the subtilosin A precursor peptide, demonstrating broad substrate promiscuity where none was previously known. Importantly, we show that the positions of the sactionine linkages can be moved, giving rise to new, unnatural sactipeptide structures. E. coli heterologous expression also allowed incorporation of unnatural amino acids into sactipeptides by means of amber-suppression technology, potentially opening up new chemistry and new applications for unnatural sactipeptides

    Differentiating between models of Epothilone binding to microtubules using tubulin mutagenesis, cytotoxicity, and molecular modeling

    Get PDF
    This is the peer reviewed version of the following article: Entwistle, R. A., Rizk, R. S., Cheng, D. M., Lushington, G. H., Himes, R. H., & Gupta, M. L. (2012). Differentiating between models of Epothilone binding to microtubules using tubulin mutagenesis, cytotoxicity, and molecular modeling. ChemMedChem, 7(9), 1580–1586. http://doi.org/10.1002/cmdc.201200286, which has been published in final form at doi.org/10.1002/cmdc.201200286. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Microtubule stabilizers are powerful anti-mitotic compounds and represent a proven cancer treatment strategy. Several classes of compounds in clinical use or trials, such as the taxanes and epothilones, bind to the same region of β-tubulin. Determining how these molecules interact with tubulin and stabilize microtubules is important both for understanding the mechanism of action and enhancing chemotherapeutic potential, e.g. reducing side effects, increasing solubility, and overcoming resistance. Structural studies using nonpolymerized tubulin or stabilized polymers have produced different models of epothilone binding. Here, we used directed mutagenesis of the binding site on Saccharomyces cerevisiae β-tubulin to analyze interactions between Epothilone B and its biologically relevant substrate, dynamic microtubules. Five engineered amino acid changes contributed to a 125-fold increase in Epothilone B cytotoxicity independent of inherent microtubule stability. The mutagenesis of endogenous β-tubulin was done in otherwise isogenic strains. This facilitated the correlation of amino acid substitutions with altered cytotoxicity using molecular mechanics simulations. The results, which are based on the interaction between Epothilone B and dynamic microtubules, most strongly support the binding mode determined by NMR spectroscopy-based studies. This work establishes a system for discriminating between potential binding modes and among various compounds and/or analogues using a sensitive biological activity-based readout

    Fisheries Exclusion Zones: Value and its sensitivity to data uncertainty

    Get PDF
    This paper focuses on the findings of the project that pertain particularly to the determination of the value of fisheries exclusion zones and the sensitivity of value estimation to data uncertainty. It necessarily draws on both the lite rature review and the case studies and in terms of its content extracts, presents and su mmarises the pertinent material therein covered. By collating this material a more directed consid eration of the topic of value is facilitated and the findings of the study as a whole more clear ly highlighted, and through consideration of uncertainty, also qualified

    Determinants of Catch-Up Growth in International Adoptees from Eastern Europe

    Get PDF
    Children raised in orphanages frequently experience growth suppression due to multiple risk factors. Placing such children in more nurturing environments through adoption leads to significant catch-up growth (CUG), the determinants of which are not entirely understood. The goal of this study was to perform an auxological evaluation and examine the degree and correlates of CUG in international adoptees. Children adopted from Eastern Europe, (n = 148, 71 males), 7 to 59 months of age, were recruited within 3 weeks of their arrival to the US. At baseline, mean height SDS was −1.2 ± 1.1 and 22% were <−2 SDS for height. IGF-1 and/or IGFBP-3 levels <−2 SDS were present in 32%. CUG, defined as a gain of >+0.5 in height SDS, was seen in 62% of adoptees at 6 months after adoption; 7% of children remained <−2 SDS for height (two had growth hormone deficiency). Growth factors improved in the majority of children. Younger age, greater degree of initial growth failure, and higher caloric intake were significantly associated with improved linear growth in multiple regression models. In summary, most adoptees demonstrate excellent CUG within six months after adoption. If growth failure persists after 6 months of appropriate caloric intake, nutrition-independent causes should be considered

    VEGF and TGF-β are required for the maintenance of the choroid plexus and ependyma

    Get PDF
    Although the role of vascular endothelial growth factor (VEGF) in developmental and pathological angiogenesis is well established, its function in the adult is less clear. Similarly, although transforming growth factor (TGF) β is involved in angiogenesis, presumably by mediating capillary (endothelial cell [EC]) stability, its involvement in quiescent vasculature is virtually uninvestigated. Given the neurological findings in patients treated with VEGF-neutralizing therapy (bevacizumab) and in patients with severe preeclampsia, which is mediated by soluble VEGF receptor 1/soluble Fms-like tyrosine kinase receptor 1 and soluble endoglin, a TGF-β signaling inhibitor, we investigated the roles of VEGF and TGF-β in choroid plexus (CP) integrity and function in adult mice. Receptors for VEGF and TGF-β were detected in adult CP, as well as on ependymal cells. Inhibition of VEGF led to decreased CP vascular perfusion, which was associated with fibrin deposition. Simultaneous blockade of VEGF and TGF-β resulted in the loss of fenestrae on CP vasculature and thickening of the otherwise attenuated capillary endothelium, as well as the disappearance of ependymal cell microvilli and the development of periventricular edema. These results provide compelling evidence that both VEGF and TGF-β are involved in the regulation of EC stability, ependymal cell function, and periventricular permeability
    corecore