1,656 research outputs found

    New derivation for the equations of motion for particles in electromagnetism

    Full text link
    We present equations of motion for charged particles using balanced equations, and without introducing explicitly divergent quantities. This derivation contains as particular cases some well known equations of motion, as the Lorentz-Dirac equations. An study of our main equations in terms of order of the interaction with the external field conduces us to the Landau-Lifshitz equations. We find that the analysis in second order show a special behavior. We give an explicit presentation up to third order of our main equations, and expressions for the calculation of general orders.Comment: 11 pages, 2 figures. Minor changes. Closer to published versio

    Monte Carlo simulation for statistical mechanics model of ion channel cooperativity in cell membranes

    Full text link
    Voltage-gated ion channels are key molecules for the generation and propagation of electrical signals in excitable cell membranes. The voltage-dependent switching of these channels between conducting and nonconducting states is a major factor in controlling the transmembrane voltage. In this study, a statistical mechanics model of these molecules has been discussed on the basis of a two-dimensional spin model. A new Hamiltonian and a new Monte Carlo simulation algorithm are introduced to simulate such a model. It was shown that the results well match the experimental data obtained from batrachotoxin-modified sodium channels in the squid giant axon using the cut-open axon technique.Comment: Paper has been revise

    Cosmology and the Korteweg-de Vries Equation

    Full text link
    The Korteweg-de Vries (KdV) equation is a non-linear wave equation that has played a fundamental role in diverse branches of mathematical and theoretical physics. In the present paper, we consider its significance to cosmology. It is found that the KdV equation arises in a number of important scenarios, including inflationary cosmology, the cyclic universe, loop quantum cosmology and braneworld models. Analogies can be drawn between cosmic dynamics and the propagation of the solitonic wave solution to the equation, whereby quantities such as the speed and amplitude profile of the wave can be identified with cosmological parameters such as the spectral index of the density perturbation spectrum and the energy density of the universe. The unique mathematical properties of the Schwarzian derivative operator are important to the analysis. A connection with dark solitons in Bose-Einstein condensates is briefly discussed.Comment: 7 pages; References adde

    On a certain class of semigroups of operators

    Full text link
    We define an interesting class of semigroups of operators in Banach spaces, namely, the randomly generated semigroups. This class contains as a remarkable subclass a special type of quantum dynamical semigroups introduced by Kossakowski in the early 1970s. Each randomly generated semigroup is associated, in a natural way, with a pair formed by a representation or an antirepresentation of a locally compact group in a Banach space and by a convolution semigroup of probability measures on this group. Examples of randomly generated semigroups having important applications in physics are briefly illustrated.Comment: 11 page

    Biased Brownian motion in extreme corrugated tubes

    Full text link
    Biased Brownian motion of point-size particles in a three-dimensional tube with smoothly varying cross-section is investigated. In the fashion of our recent work [Martens et al., PRE 83,051135] we employ an asymptotic analysis to the stationary probability density in a geometric parameter of the tube geometry. We demonstrate that the leading order term is equivalent to the Fick-Jacobs approximation. Expression for the higher order corrections to the probability density are derived. Using this expansion orders we obtain that in the diffusion dominated regime the average particle current equals the zeroth-order Fick-Jacobs result corrected by a factor including the corrugation of the tube geometry. In particular we demonstrate that this estimate is more accurate for extreme corrugated geometries compared to the common applied method using the spatially dependent diffusion coefficient D(x,f). The analytic findings are corroborated with the finite element calculation of a sinusoidal-shaped tube.Comment: 10 pages, 4 figure

    Effective zero-thickness model for a conductive membrane driven by an electric field

    Full text link
    The behavior of a conductive membrane in a static (DC) electric field is investigated theoretically. An effective zero-thickness model is constructed based on a Robin-type boundary condition for the electric potential at the membrane, originally developed for electrochemical systems. Within such a framework, corrections to the elastic moduli of the membrane are obtained, which arise from charge accumulation in the Debye layers due to capacitive effects and electric currents through the membrane and can lead to an undulation instability of the membrane. The fluid flow surrounding the membrane is also calculated, which clarifies issues regarding these flows sharing many similarities with flows produced by induced charge electro-osmosis (ICEO). Non-equilibrium steady states of the membrane and of the fluid can be effectively described by this method. It is both simpler, due to the zero thickness approximation which is widely used in the literature on fluid membranes, and more general than previous approaches. The predictions of this model are compared to recent experiments on supported membranes in an electric field.Comment: 14 pages, 5 figure

    On a complex differential Riccati equation

    Full text link
    We consider a nonlinear partial differential equation for complex-valued functions which is related to the two-dimensional stationary Schrodinger equation and enjoys many properties similar to those of the ordinary differential Riccati equation as, e.g., the famous Euler theorems, the Picard theorem and others. Besides these generalizations of the classical "one-dimensional" results we discuss new features of the considered equation like, e.g., an analogue of the Cauchy integral theorem

    Movable algebraic singularities of second-order ordinary differential equations

    Full text link
    Any nonlinear equation of the form y''=\sum_{n=0}^N a_n(z)y^n has a (generally branched) solution with leading order behaviour proportional to (z-z_0)^{-2/(N-1)} about a point z_0, where the coefficients a_n are analytic at z_0 and a_N(z_0)\ne 0. We consider the subclass of equations for which each possible leading order term of this form corresponds to a one-parameter family of solutions represented near z_0 by a Laurent series in fractional powers of z-z_0. For this class of equations we show that the only movable singularities that can be reached by analytic continuation along finite-length curves are of the algebraic type just described. This work generalizes previous results of S. Shimomura. The only other possible kind of movable singularity that might occur is an accumulation point of algebraic singularities that can be reached by analytic continuation along infinitely long paths ending at a finite point in the complex plane. This behaviour cannot occur for constant coefficient equations in the class considered. However, an example of R. A. Smith shows that such singularities do occur in solutions of a simple autonomous second-order differential equation outside the class we consider here

    On the Plants Leaves Boundary, "Jupe \`a Godets" and Conformal Embeddings

    Full text link
    The stable profile of the boundary of a plant's leaf fluctuating in the direction transversal to the leaf's surface is described in the framework of a model called a "surface \`a godets". It is shown that the information on the profile is encoded in the Jacobian of a conformal mapping (the coefficient of deformation) corresponding to an isometric embedding of a uniform Cayley tree into the 3D Euclidean space. The geometric characteristics of the leaf's boundary (like the perimeter and the height) are calculated. In addition a symbolic language allowing to investigate statistical properties of a "surface \`a godets" with annealed random defects of curvature of density qq is developed. It is found that at q=1q=1 the surface exhibits a phase transition with critical exponent α=1/2\alpha=1/2 from the exponentially growing to the flat structure.Comment: 17 pages (revtex), 8 eps-figures, to appear in Journal of Physics

    Linear superposition in nonlinear wave dynamics

    Full text link
    We study nonlinear dispersive wave systems described by hyperbolic PDE's in R^{d} and difference equations on the lattice Z^{d}. The systems involve two small parameters: one is the ratio of the slow and the fast time scales, and another one is the ratio of the small and the large space scales. We show that a wide class of such systems, including nonlinear Schrodinger and Maxwell equations, Fermi-Pasta-Ulam model and many other not completely integrable systems, satisfy a superposition principle. The principle essentially states that if a nonlinear evolution of a wave starts initially as a sum of generic wavepackets (defined as almost monochromatic waves), then this wave with a high accuracy remains a sum of separate wavepacket waves undergoing independent nonlinear evolution. The time intervals for which the evolution is considered are long enough to observe fully developed nonlinear phenomena for involved wavepackets. In particular, our approach provides a simple justification for numerically observed effect of almost non-interaction of solitons passing through each other without any recourse to the complete integrability. Our analysis does not rely on any ansatz or common asymptotic expansions with respect to the two small parameters but it uses rather explicit and constructive representation for solutions as functions of the initial data in the form of functional analytic series.Comment: New introduction written, style changed, references added and typos correcte
    • …
    corecore