We consider a nonlinear partial differential equation for complex-valued
functions which is related to the two-dimensional stationary Schrodinger
equation and enjoys many properties similar to those of the ordinary
differential Riccati equation as, e.g., the famous Euler theorems, the Picard
theorem and others. Besides these generalizations of the classical
"one-dimensional" results we discuss new features of the considered equation
like, e.g., an analogue of the Cauchy integral theorem