2,500 research outputs found

    Exercise intensity-dependent effects of arm and leg-cycling on cognitive performance

    Get PDF
    Physiological responses to arm and leg-cycling are different, which may influence psychological and biological mechanisms that influence post-exercise cognitive performance. The aim of this study was to determine the effects of maximal and submaximal (absolute and relative intensity matched) arm and leg-cycling on executive function. Thirteen males (age, 24.7 ± 5.0 years) initially undertook two incremental exercise tests to volitional exhaustion for arm-cycling (82 ± 18 W) and leg-cycling (243 ± 52 W) for the determination of maximal power output. Participants subsequently performed three 20-min constant load exercise trials: (1) arm-cycling at 50% of the ergometer-specific maximal power output (41 ± 9 W), (2) leg-cycling at 50% of the ergometer-specific maximal power output (122 ± 26 W), and (3) leg-cycling at the same absolute power output as the submaximal arm-cycling trial (41 ± 9 W). An executive function task was completed before, immediately after and 15-min after each exercise test. Exhaustive leg-cycling increased reaction time (p 0.05). Improvements in reaction time following arm-cycling were maintained for at least 15-min post exercise (p = 0.008, d = -0.73). Arm and leg-cycling performed at the same relative intensity elicit comparable improvements in cognitive performance. These findings suggest that individuals restricted to arm exercise possess a similar capacity to elicit an exercise-induced cognitive performance benefit

    Effect of arm movement and task difficulty level on balance performance in healthy children:are there sex differences?

    Get PDF
    OBJECTIVE: In children, studies have shown that balance performance is worse in boys compared to girls and further studies revealed inferior performance when arm movement was restricted during balance assessment. However, it remains unclear whether restriction of arm movement during balance testing differentially affects children’s balance performance (i.e., boys more than girls). Thus, we compared the influence of arm movement on balance performance in healthy boys versus girls (mean age: ~ 11.5 years) while performing balance tasks with various difficulty level. RESULTS: In nearly all tests, balance performance (i.e., timed one-legged stance, 3-m beam walking backward step number, Lower Quarter Y-Balance test reach distance) was significantly worse during restricted compared to free arm movement but without any differences between sexes or varying levels of task difficulty. These findings indicated that balance performance is negatively affected by restriction of arm movement, but this does not seem to be additionally influenced by children’s sex and the level of task difficulty

    Effect of arm movement on balance performance in children: role of expertise in gymnastics

    Get PDF
    OBJECTIVE: Studies have shown that balance performance is better in gymnasts compared to age-/sex-matched controls and further studies revealed superior performance when arms were free to move during assessment of balance. However, it is unknown whether free arm movement during balance testing differentially affects balance performance with respect to sports expertise (i.e., gymnasts are less affected than age-/sex-matched controls). Therefore, we investigated the effect of arm movement on balance performance in young female gymnasts compared to age-/sex-matched controls while performing balance tasks with various difficulty levels. RESULTS: In both samples, balance performance (except for the timed one-legged stance) was significantly better during free compared to restricted arm movement conditions and this was especially observed in the highest task difficulty condition of the 3-m beam walking backward test. These findings revealed that balance performance is positively affected by free arm movements, but this does not seem to be additionally influenced by the achieved expertise level in young gymnasts

    The influence of false interoceptive feedback on emotional state and balance responses to height-induced postural threat

    Get PDF
    Postural threat elicits a robust emotional response (e.g., fear and anxiety about falling), with concomitant modifications in balance. Recent theoretical accounts propose that emotional responses to postural threats are manifested, in part, from the conscious monitoring and appraisal of bodily signals (‘interoception’). Here, we empirically probe the role of interoception in shaping emotional responses to a postural threat by experimentally manipulating interoceptive cardiac feedback. Sixty young adults completed a single 60-s trial under the following conditions: Ground (no threat) without heart rate (HR) feedback, followed by Threat (standing on the edge of a raised surface), during which participants received either false heart rate feedback (either slow [n=20] or fast [n=20] HR feedback) or no feedback (n=20). Participants provided with false fast HR feedback during postural threat felt more fearful, reported feeling less stable, and rated the task more difficult than participants who did not receive HR feedback, or those who received false slow HR feedback (Cohen’s d effect size = 0.79 – 1.78). However, behavioural responses did not significantly differ across the three groups. When compared to the no HR feedback group, false slow HR feedback did not significantly affect emotional or behavioural responses to the postural threat. These observations provide the first experimental evidence for emerging theoretical accounts describing the role of interoception in the generation of emotional responses to postural threats

    Force-time characteristics of repeated bouts of depth jumps and the effects of compression garments

    Get PDF
    No studies have reported ground-reaction force (GRF) profiles of the repeated depth-jump (DJ) protocols commonly used to study exercise-induced muscle damage (EIMD). Furthermore, whilst compression garments (CG) may accelerate recovery from EIMD, any effects on the repeated-bout effect are unknown. Therefore, we investigated the GRF profiles of two repeated bouts of damage-inducing DJs, and the effects of wearing CG for recovery. Non-resistance trained males randomly received CG (n=9) or placebo (n=8) for 72 h recovery, following 20 x 20 m sprints and 10 x 10 DJs from 0.6 m. Exercise was repeated after 14 days. Using a three-way (set x bout x group) design, changes in GRF were assessed with ANOVA and statistical parametric mapping (SPM). Jump height, reactive strength, peak and mean propulsive forces declined between sets (p<0.001). Vertical stiffness, contact time, force at zero velocity and propulsive duration increased (p<0.05). According to SPM, braking (17–25% of the movement), and propulsive forces (58–81%) declined (p<0.05). During the repeated bout, peak propulsive force and duration increased (p<0.05), whilst mean propulsive force (p<0.05) and GRF from 59–73% declined (p<0.001). A repeated bout of DJs differed in propulsive GRF, without changes to the eccentric phase, or effects from CG

    Effect of low versus high balance training complexity on balance performance in male adolescents

    Get PDF
    Objective: The current study aimed to determine the effects of low (i.e., balance task only) versus high (i.e., balance task combined with an additional motor task like dribbling a basketball) balance training complexity (6 weeks of training consisting of 2 × 30 min balance exercises per week) on measures of static and dynamic balance in 44 healthy male adolescents (mean age: 13.3 ± 1.6 years). Results: Irrespective of balance training complexity, significant medium- to large-sized pretest to posttest improvements were detected for static (i.e., One-Legged Stance test, stance time [s], 0.001 < p ≤ 0.008) and dynamic (i.e., 3-m Beam Walking Backward test, steps [n], 0.001 < p ≤ 0.002; Y-Balance-Test-Lower-Quarter, reach distance [cm], 0.001 < p ≤ 0.003) balance performance. Further, in all but one comparison (i.e., stance time with eyes opened on foam ground) no group × test interactions were found. These results imply that balance training is effective to improve static and dynamic measures of balance in healthy male adolescents, but the effectiveness seems unaffected by the applied level of balance training complexity
    • …
    corecore