13,902 research outputs found
Machine finishes balls to high degree of roundness
Machine was developed to finish ball to roundness within 12.5 nm (half a microinch) from any types of hard material. Grinding and polishing to this tolerance is accomplished by lapping elements on four to six motor-driven spindles. Spindles are adjustably spring-loaded to ensure constant contact pressure on ball and are driven by variable speed electric motors
Program on Earth Observation Data Management Systems (EODMS)
An assessment was made of the needs of a group of potential users of satellite remotely sensed data (state, regional, and local agencies) involved in natural resources management in five states, and alternative data management systems to satisfy these needs are outlined. Tasks described include: (1) a comprehensive data needs analysis of state and local users; (2) the design of remote sensing-derivable information products that serve priority state and local data needs; (3) a cost and performance analysis of alternative processing centers for producing these products; (4) an assessment of the impacts of policy, regulation and government structure on implementing large-scale use of remote sensing technology in this community of users; and (5) the elaboration of alternative institutional arrangements for operational Earth Observation Data Management Systems (EODMS). It is concluded that an operational EODMS will be of most use to state, regional, and local agencies if it provides a full range of information services -- from raw data acquisition to interpretation and dissemination of final information products
Program on Earth Observation Data Management Systems (EODMS), appendixes
The needs of state, regional, and local agencies involved in natural resources management in Illinois, Iowa, Minnesota, Missouri, and Wisconsin are investigated to determine the design of satellite remotely sensed derivable information products. It is concluded that an operational Earth Observation Data Management System (EODMS) will be most beneficial if it provides a full range of services - from raw data acquisition to interpretation and dissemination of final information products. Included is a cost and performance analysis of alternative processing centers, and an assessment of the impacts of policy, regulation, and government structure on implementing large scale use of remote sensing technology in this community of users
Self-Assembling Proteins as High-Performance Substrates for Embryonic Stem Cell Self-Renewal
The development of extracellular matrix mimetics that imitate niche stem cell microenvironments and support cell growth for technological applications is intensely pursued. Specifically, mimetics are sought that can enact control over the self-renewal and directed differentiation of human pluripotent stem cells (hPSCs) for clinical use. Despite considerable progress in the field, a major impediment to the clinical translation of hPSCs is the difficulty and high cost of large-scale cell production under xeno-free culture conditions using current matrices. Here, a bioactive, recombinant, protein-based polymer, termed ZT Fn , is presented that closely mimics human plasma fibronectin and serves as an economical, xeno-free, biodegradable, and functionally adaptable cell substrate. The ZT Fn substrate supports with high performance the propagation and long-term self-renewal of human embryonic stem cells while preserving their pluripotency. The ZT Fn polymer can, therefore, be proposed as an efficient and affordable replacement for fibronectin in clinical grade cell culturing. Further, it can be postulated that the ZT polymer has significant engineering potential for further orthogonal functionalization in complex cell applications
The "recoil" correction of order to hyperfine splitting of positronium ground state
The "recoil" correction of order to the hyperfine splitting of
positronium ground state was found. The formalism employed is based on the
noncovariant perturbation theory in QED. Equation for two-particle component of
full (many-body) wave function is used, in which effective Hamiltonian depends
on the energy of a system. The effective Hamiltonian is not restricted to the
nonrelativistic region, so there is no need in any regularization. To evaluate
integrals over loop momenta, they are divided into "hard" and "soft" parts,
coming from large and small momenta respectively. Soft contributions were found
analytically, and hard ones are evaluated by numerical integration. Some soft
terms due to the retardation cancel each other. To calculate the "hard"
contributions, a great number of noncovariant graphs is replaced by only a few
covariant ones. The hard contribution was found in two ways. The first way is
to evaluate contributions of separate graphs, using the Coulomb gauge. The
second one is to calculate full hard contribution as a whole using the Feynman
gauge. The final result for the "recoil" correction is 0.381(6) m\al^6 and
agrees with those of previous papers. Diagram-to-diagram comparison with the
revised results of Adkins&Sapirstein was done. All the results agree, so the
"recoil" correction is now firmly established. This means a considerable
disagreement with the experimental data.Comment: 28 pages, latex including latex figure
Interpreting Helioseismic Structure Inversion Results of Solar Active Regions
Helioseismic techniques such as ring-diagram analysis have often been used to
determine the subsurface structural differences between solar active and quiet
regions. Results obtained by inverting the frequency differences between the
regions are usually interpreted as the sound-speed differences between them.
These in turn are used as a measure of temperature and magnetic-field strength
differences between the two regions. In this paper we first show that the
"sound-speed" difference obtained from inversions is actually a combination of
sound-speed difference and a magnetic component. Hence, the inversion result is
not directly related to the thermal structure. Next, using solar models that
include magnetic fields, we develop a formulation to use the inversion results
to infer the differences in the magnetic and thermal structures between active
and quiet regions. We then apply our technique to existing structure inversion
results for different pairs of active and quiet regions. We find that the
effect of magnetic fields is strongest in a shallow region above 0.985R_sun and
that the strengths of magnetic-field effects at the surface and in the deeper
(r < 0.98R_sun) layers are inversely related, i.e., the stronger the surface
magnetic field the smaller the magnetic effects in the deeper layers, and vice
versa. We also find that the magnetic effects in the deeper layers are the
strongest in the quiet regions, consistent with the fact that these are
basically regions with weakest magnetic fields at the surface. Because the
quiet regions were selected to precede or follow their companion active
regions, the results could have implications about the evolution of magnetic
fields under active regions.Comment: Accepted for publication in Solar Physic
Thermal fluctuations of a quantized massive scalar field in Rindler background
Thermal fluctuations for a massive scalar field in the Rindler wedge are
obtained by applying the point-splitting procedure to the zero temperature
Feynman propagator in a conical spacetime. Renormalization is implemented by
removing the zero temperature contribution. It is shown that for a field of non
vanishing mass the thermal fluctuations, when expressed in terms of the local
temperature, do not have Minkowski form. As a by product, Minkowski vacuum
fluctuations seen by an uniformly accelerated observer are determined and
confronted with the literature.Comment: 10 pages; Latex fil
General Gauge and Anomaly Mediated Supersymmetry Breaking in Grand Unified Theories with Vector-Like Particles
In Grand Unified Theories (GUTs) from orbifold and various string
constructions the generic vector-like particles do not need to form complete
SU(5) or SO(10) representations. To realize them concretely, we present
orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry can be
broken down to flipped SU(5) X U(1)_X or Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R
gauge symmetries, and F-theory SU(5) models. Interestingly, these vector-like
particles can be at the TeV-scale so that the lightest CP-even Higgs boson mass
can be lifted, or play the messenger fields in the Gauge Mediated Supersymmetry
Breaking (GMSB). Considering GMSB, ultraviolet insensitive Anomaly Mediated
Supersymmetry Breaking (AMSB), and the deflected AMSB, we study the general
gaugino mass relations and their indices, which are valid from the GUT scale to
the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) X
U(1)_X models, and the Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R models. In the
deflected AMSB, we also define the new indices for the gaugino mass relations,
and calculate them as well. Using these gaugino mass relations and their
indices, we may probe the messenger fields at intermediate scale in the GMSB
and deflected AMSB, determine the supersymmetry breaking mediation mechanisms,
and distinguish the four-dimensional GUTs, orbifold GUTs, and F-theory GUTs.Comment: RevTex4, 45 pages, 15 tables, version to appear in JHE
Realistic Standard Model Fermion Mass Relations in Generalized Minimal Supergravity (GmSUGRA)
Grand Unified Theories (GUTs) usually predict wrong Standard Model (SM)
fermion mass relation m_e/m_{\mu} = m_d/m_s toward low energies. To solve this
problem, we consider the Generalized Minimal Supergravity (GmSUGRA) models,
which are GUTs with gravity mediated supersymmetry breaking and higher
dimensional operators. Introducing non-renormalizable terms in the super- and
K\"ahler potentials, we can obtain the correct SM fermion mass relations in the
SU(5) model with GUT Higgs fields in the {\bf 24} and {\bf 75} representations,
and in the SO(10) model. In the latter case the gauge symmetry is broken down
to SU(3)_C X SU(2)_L X SU(2)_R X U(1)_{B-L}, to flipped SU(5)X U(1)_X, or to
SU(3)_C X SU(2)_L X U(1)_1 X U(1)_2. Especially, for the first time we generate
the realistic SM fermion mass relation in GUTs by considering the
high-dimensional operators in the K\"ahler potential.Comment: JHEP style, 29 pages, no figure,references adde
- …