24 research outputs found

    Relating Ancient Maya Land Use Legacies To The Contemporary Forest Of Caracol, Belize

    Get PDF
    Human land use legacies have significant and long lasting impacts across landscapes. However, investigating the impacts of ancient land use legacies ( \u3e 400 years) remains problematic due to the difficulty in detecting ancient land uses, especially those beneath dense canopies. The city of Caracol, one of the most important Maya archaeological sites in Belize, was abandoned after the collapse of the Maya civilization (ca. A.D. 900), leaving behind numerous structures, causeways, and agricultural terraces that persist beneath the dense tropical forest of western Belize. LiDAR (Light Detection and Ranging) technology enables detection of below canopy Maya archaeological features, providing an ideal opportunity to study the effects of ancient land use legacies on contemporary tropical forest composition. LiDAR also provided us with a detailed record of the 3-dimensional forest structure over the 200 km2 study area. This allowed the investigation how ancient land uses continue to impact both forest composition, in terms of tree species, and forest structure. I recorded tree species over four land use categories: 1) structures, 2) causeways, 3) terraced, and 4) non-terraced land. Using non-metric multidimensional scaling (NMS) and multiresponse permutation procedures (MRPP) to test for differences between the classes, I found significantly distinct tree communities associated with the presence of terraces and the underlying topography. Terraced slopes appear to function as micro-valleys on the side of a hill, creating an environmental bridge between slope and valley tree communities. Tree species composition over causeways and structures was also found to be significantly different from terraced and non-terraced plots. Forest structure was assessed by extracting LiDAR points for terraced (n=150) and nonterraced (n=150) 0.25 ha plots. I calculated average canopy height, canopy closure, and vertical diversity from the height bins of the LiDAR points, using slope, elevation, and aspect as covariates. Using PerMANOVA I determined that forest structure over terraces was significantly different from non-terraced land. Terraces appear to mediate the effect of slope, resulting in less structural variation between slope and non-sloped land. These results led to the conclusion that human land uses abandoned \u3e1000 years ago continue to impact the contemporary forests

    TEACHING FOR CITIZENSHIP WITHIN ELEMENTARY CLASSROOMS

    Get PDF
    The purpose of this study was to learn more about elementary social studies instruction and its role within citizenship education. In particular, this study focused on gaining insight into the nature of social studies instruction, whether implicit or explicit. Data were collected through the use of interviews, classroom observations, and documents found within a second grade classroom. Social studies existed in different forms within this classroom including promoting aspects of community, socialization with an emphasis on behavior, and foundational social studies content. I discuss implications for myself, for elementary educators, and for future educators

    Use of Airborne LiDAR to Delineate Canopy Degradation and Encroachment along the Guatemala-Belize Border

    Get PDF
    Tropical rainforest clearing and degradation significantly reduces carbon sequestration and increases the rate of biodiversity loss. There has been a concerted international effort to develop remote sensing techniques to monitor broad-scale patterns of forest canopy disturbance. In addition to loss of natural resources, recent deforestation in Mesoamerica threatens historic cultural resources that for centuries lay hidden below the protective canopy. Here, we compare satellite-derived measures of canopy disturbance that occurred over a three decade period since 1980 to those derived from a 2009 airborne LiDAR campaign over the Caracol Archaeological Reserve in western Belize. Scaling up fine-resolution canopy height measures to the 30 m resolution of Landsat Thematic Mapper, we found LiDAR revealed a \u3e58% increase in the extent of canopy disturbance where there was an overlap of the remotely sensed data sources. For the entire archaeological reserve, with the addition of LiDAR, there was a 2.5% increase of degraded canopy than estimated with Landsat alone, indicating that 11.3% of the reserve has been subjected to illegal selective logging and deforestation. Incursions into the reserve from the Guatemala border, represented by LiDAR-detected canopy disturbance, extended 1 km deeper (to 3.5 km) into Belize than were derived with Landsat. Thus, while LiDAR enables a synoptic, never-seen-before, below-canopy view of the Maya city of Caracol, it also reveals the degree of canopy disturbance and potential looting of areas yet to be documented by archaeologists on the ground

    Detection and Morphologic Analysis of Potential Below-Canopy Cave Openings in the Karst Landscape around the Maya Polity of Caracol using AirborneLidar

    Full text link
    Locating caves can be difficult, as their entranceways are often obscured below vegetation. Recently, active remote-sensing technologies, in particular laser-based sensor systems (LiDARs), have demonstrated the ability to penetrate dense forest canopies to reveal the underlying ground topography. An airborne LiDAR system was used to generate a 1 m resolution, bare-earth digital elevation model (DEM) from an archaeologically- and speleologically-rich area of western Belize near the ancient Maya site of Caracol. Using a simple index to detect elevation gradients in the DEM, we identified depressions with at least a 10 m change within a circular area of no more than 25 m radius. Across 200 km 2 of the karst landscape, we located 61 depressions. Sixty of these had not been previously documented; the other was a cave opening known from a previous expedition. The morphologies of the depressions were characterized based on the LiDAR-derived DEM parameters, e.g., depth, opening area, and perimeter. We also investigated how the measurements change as a function of spatial resolution. Though there was a range of morphologies, most depressions were clustered around an average maximum depth of 21 m and average opening diameter of 15 m. Five depression sites in the general vicinity of the Caracol epicenter were visited; two of these were massive, with opening diameters of ∼50 m, two could not be explored for lack of climbing gear, and one site was a cave opening into several chambers with speleothems and Maya artifacts. Though further investigation is warranted to determine the archaeological and geological significance of the remaining depressions, the general methodology represents an important advancement in cave detection

    "A renewed sense of purpose": mothers' and fathers' experience of having a child following a recent stillbirth.

    Get PDF
    Most research has focused on mothers' experiences of perinatal loss itself or on the subsequent pregnancy, whereas little attention has been paid to both parents' experiences of having a child following late perinatal loss and the experience of parenting this child. The current study therefore explored mothers' and fathers' experiences of becoming a parent to a child born after a recent stillbirth, covering the period of the second pregnancy and up to two years after the birth of the next baby. In depth interviews were conducted with 7 couples (14 participants). Couples were eligible if they previously had a stillbirth (after 24 weeks of gestation) and subsequently had another child (their first live baby) who was now under the age of 2 years. Couples who had more than one child after experiencing a stillbirth and those who were not fluent in English were excluded. Qualitative analysis of the interview data was conducted using Interpretive Phenomenological Analysis. Five superordinate themes emerged from the data: Living with uncertainty; Coping with uncertainty; Relationship with the next child; The continuing grief process; Identity as a parent. Overall, fathers' experiences were similar to those of mothers', including high levels of anxiety and guilt during the subsequent pregnancy and after the child was born. Coping strategies to address these were identified. Differences between mothers and fathers regarding the grief process during the subsequent pregnancy and after their second child was born were identified. Despite difficulties with bonding during pregnancy and at the time when the baby was born, parents' perceptions of their relationship with their subsequent child were positive. Findings highlight the importance of tailoring support systems not only according to mothers' but also to fathers' needs. Parents', and particularly fathers', reported lack of opportunities for grieving as well as the high level of anxiety of both parents about their baby's wellbeing during pregnancy and after birth implies a need for structured support. Difficulties experienced in bonding with the subsequent child during pregnancy and once the child is born need to be normalised

    Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure

    No full text
    Human land use legacies have significant and long-lasting ecological impacts across landscapes. Investigating ancient (>400 years) legacy effects can be problematic due to the difficulty in detecting specific, historic land uses, especially those hidden beneath dense canopies. Caracol, the largest (~200 km2) Maya archaeological site in Belize, was abandoned ca. A.D. 900, leaving behind myriad structures, causeways, and an extensive network of agricultural terraces that persist beneath the architecturally complex tropical forest canopy. Airborne LiDAR enables the detection of these below-canopy archaeological features while simultaneously providing a detailed record of the aboveground 3-dimensional canopy organization, which is indicative of a forest’s ecological function. Here, this remote sensing technology is used to determine the effects of ancient land use legacies on contemporary forest structure. Canopy morphology was assessed by extracting LiDAR point clouds (0.25 ha plots) from LiDAR-identified terraced (n = 150) and non-terraced (n = 150) areas on low (0°–10°), medium (10°–20°), and high (>20°) slopes. We calculated the average canopy height, canopy openness, and vertical diversity from the LiDAR returns, with topographic features (i.e., slope, elevation, and aspect) as covariates. Using a PerMANOVA procedure, we determined that forests growing on agricultural terraces exhibited significantly different canopy structure from those growing on non-terraced land. Terraces appear to mediate the effect of slope, resulting in less structural variation between slope and non-sloped land and yielding taller, more closed, more vertically diverse forests. These human land uses abandoned >1000 years ago continue to impact contemporary tropical rainforests having implications related to arboreal habitat and carbon storage

    Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure

    Get PDF
    Human land use legacies have significant and long-lasting ecological impacts across landscapes. Investigating ancient (>400 years) legacy effects can be problematic due to the difficulty in detecting specific, historic land uses, especially those hidden beneath dense canopies. Caracol, the largest (~200 km2) Maya archaeological site in Belize, was abandoned ca. A.D. 900, leaving behind myriad structures, causeways, and an extensive network of agricultural terraces that persist beneath the architecturally complex tropical forest canopy. Airborne LiDAR enables the detection of these below-canopy archaeological features while simultaneously providing a detailed record of the aboveground 3-dimensional canopy organization, which is indicative of a forest’s ecological function. Here, this remote sensing technology is used to determine the effects of ancient land use legacies on contemporary forest structure. Canopy morphology was assessed by extracting LiDAR point clouds (0.25 ha plots) from LiDAR-identified terraced (n = 150) and non-terraced (n = 150) areas on low (0°–10°), medium (10°–20°), and high (>20°) slopes. We calculated the average canopy height, canopy openness, and vertical diversity from the LiDAR returns, with topographic features (i.e., slope, elevation, and aspect) as covariates. Using a PerMANOVA procedure, we determined that forests growing on agricultural terraces exhibited significantly different canopy structure from those growing on non-terraced land. Terraces appear to mediate the effect of slope, resulting in less structural variation between slope and non-sloped land and yielding taller, more closed, more vertically diverse forests. These human land uses abandoned >1000 years ago continue to impact contemporary tropical rainforests having implications related to arboreal habitat and carbon storage
    corecore