183 research outputs found

    Candida albicans keratitis modified by steroid application

    Get PDF
    The paper reports on Candida albicans ocular infection modified by steroid eye drops. A 74-year-old male complained of conjunctival injection and pain in his right eye three months after pterygium and cataract surgery. After treatment with antibiotics and steroid eye drops for three days, he was referred to our hospital. Clear localized corneal endothelial plaque with injection of ciliary body was observed. No erosion of the corneal epithelium, or infiltration of stromal edema was observed, suggesting that the pathological organism derived from the intracameral region. Because ocular infection was suspected, steroid eye drops were stopped, which led immediately to typical infectious keratitis in the pathological region, with epithelial erosion, fluffy abscess, stromal infiltration, and edema. For diagnostic purposes, the plaque was surgically removed with forceps and the anterior chamber was irrigated with antibiotics. The smear and culture examination from the plaque revealed C. albicans surrounded by neutrophils. However, aqueous fluid and fibrous tissue after gonio procedure contained no mycotic organisms. Topical fluconazole, micafungin, and pimaricin with oral itraconazole (150 mg/day) were effective. Special attention is needed when prescribing steroid eye drops to treat corneal disease especially postoperatively. Diagnosing infectious keratitis is sometimes difficult because of modification by some factors, such as postoperative conditions, scarring, and drug-induced masking. Here, we report on mycotic keratitis modified by postoperative steroid administration

    Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple system atrophy (MSA) is a sporadic disease. Its pathogenesis may involve multiple genetic and nongenetic factors, but its etiology remains largely unknown. We hypothesized that the genome of a patient with MSA would demonstrate copy number variations (CNVs) in the genes or genomic regions of interest. To identify genomic alterations increasing the risk for MSA, we examined a pair of monozygotic (MZ) twins discordant for the MSA phenotype and 32 patients with MSA.</p> <p>Results</p> <p>By whole-genome CNV analysis using a combination of CNV beadchip and comparative genomic hybridization (CGH)-based CNV microarrays followed by region-targeting, high-density, custom-made oligonucleotide tiling microarray analysis, we identified disease-specific copy number loss of the (Src homology 2 domain containing)-transforming protein 2 (<it>SHC2</it>) gene in the distal 350-kb subtelomeric region of 19p13.3 in the affected MZ twin and 10 of the 31 patients with MSA but not in 2 independent control populations (<it>p </it>= 1.04 × 10<sup>-8</sup>, odds ratio = 89.8, Pearson's chi-square test).</p> <p>Conclusions</p> <p>Copy number loss of <it>SHC2 </it>strongly indicates a causal link to MSA. CNV analysis of phenotypically discordant MZ twins is a powerful tool for identifying disease-predisposing loci. Our results would enable the identification of novel diagnostic measure, therapeutic targets and better understanding of the etiology of MSA.</p

    The 3′-Phosphoadenosine 5′-Phosphosulfate Transporters, PAPST1 and 2, Contribute to the Maintenance and Differentiation of Mouse Embryonic Stem Cells

    Get PDF
    Recently, we have identified two 3′-phosphoadenosine 5′-phosphosulfate (PAPS) transporters (PAPST1 and PAPST2), which contribute to PAPS transport into the Golgi, in both human and Drosophila. Mutation and RNA interference (RNAi) of the Drosophila PAPST have shown the importance of PAPST-dependent sulfation of carbohydrates and proteins during development. However, the functional roles of PAPST in mammals are largely unknown. Here, we investigated whether PAPST-dependent sulfation is involved in regulating signaling pathways required for the maintenance of mouse embryonic stem cells (mESCs), differentiation into the three germ layers, and neurogenesis. By using a yeast expression system, mouse PAPST1 and PAPST2 proteins were shown to have PAPS transport activity with an apparent Km value of 1.54 µM or 1.49 µM, respectively. RNAi-mediated knockdown of each PAPST induced the reduction of chondroitin sulfate (CS) chain sulfation as well as heparan sulfate (HS) chain sulfation, and inhibited mESC self-renewal due to defects in several signaling pathways. However, we suggest that these effects were due to reduced HS, not CS, chain sulfation, because knockdown of mouse N-deacetylase/N-sulfotransferase, which catalyzes the first step of HS sulfation, in mESCs gave similar results to those observed in PAPST-knockdown mESCs, but depletion of CS chains did not. On the other hand, during embryoid body formation, PAPST-knockdown mESCs exhibited abnormal differentiation, in particular neurogenesis was promoted, presumably due to the observed defects in BMP, FGF and Wnt signaling. The latter were reduced as a result of the reduction in both HS and CS chain sulfation. We propose that PAPST-dependent sulfation of HS or CS chains, which is regulated developmentally, regulates the extrinsic signaling required for the maintenance and normal differentiation of mESCs

    Alcohol drinking and risk of Parkinson's disease: a case-control study in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although some epidemiologic studies found inverse associations between alcohol drinking and Parkinson's disease (PD), the majority of studies found no such significant associations. Additionally, there is only limited research into the possible interactions of alcohol intake with aldehyde dehydrogenase (ALDH) 2 activity with respect to PD risk. We examined the relationship between alcohol intake and PD among Japanese subjects using data from a case-control study.</p> <p>Methods</p> <p>From 214 cases within 6 years of PD onset and 327 controls without neurodegenerative disease, we collected information on "peak", as opposed to average, alcohol drinking frequency and peak drinking amounts during a subject's lifetime. Alcohol flushing status was evaluated via questions, as a means of detecting inactive ALHD2. The multivariate model included adjustments for sex, age, region of residence, smoking, years of education, body mass index, alcohol flushing status, presence of selected medication histories, and several dietary factors.</p> <p>Results</p> <p>Alcohol intake during peak drinking periods, regardless of frequency or amount, was not associated with PD. However, when we assessed daily ethanol intake separately for each type of alcohol, only Japanese sake (rice wine) was significantly associated with PD (adjusted odds ratio of ≥66.0 g ethanol per day: 3.39, 95% confidence interval: 1.10-11.0, <it>P </it>for trend = 0.001). There was no significant interaction of alcohol intake with flushing status in relation to PD risk.</p> <p>Conclusions</p> <p>We did not find significant associations between alcohol intake and PD, except for the daily amount of Japanese sake. Effect modifications by alcohol flushing status were not observed.</p

    Occupational risk factors for Parkinson's disease: a case-control study in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evidence for associations between occupational factors and the risk of Parkinson's disease (PD) is inconsistent. We assessed the risk of PD associated with various occupational factors in Japan.</p> <p>Methods</p> <p>We examined 249 cases within 6 years of onset of PD. Control subjects were 369 inpatients and outpatients without neurodegenerative disease. Information on occupational factors was obtained from a self-administered questionnaire. Relative risks of PD were estimated using odds ratios (ORs) and 95% confidence intervals (CIs) based on logistic regression. Adjustments were made for gender, age, region of residence, educational level, and pack-years of smoking.</p> <p>Results</p> <p>Working in a professional or technical occupation tended to be inversely related to the risk of PD: adjusted OR was 0.59 (95% CI: 0.32-1.06, <it>P </it>= 0.08). According to a stratified analysis by gender, the decreased risk of PD for persons in professional or technical occupations was statistically significant only for men. Adjusted ORs for a professional or technical occupation among men and women were 0.22 (95% CI: 0.06-0.67) and 0.99 (0.47-2.07), respectively, and significant interaction was observed (<it>P </it>= 0.048 for homogeneity of OR). In contrast, risk estimates for protective service occupations and transport or communications were increased, although the results were not statistically significant: adjusted ORs were 2.73 (95% CI: 0.56-14.86) and 1.74 (95% CI: 0.65-4.74), respectively. No statistical significance was seen in data concerning exposure to occupational agents and the risk of PD, although roughly a 2-fold increase in OR was observed for workers exposed to stone or sand.</p> <p>Conclusion</p> <p>The results of our study suggest that occupational factors do not play a substantial etiologic role in this population. However, among men, professional or technical occupations may decrease the risk of PD.</p

    The carboxy-terminal fragment of α1A calcium channel preferentially aggregates in the cytoplasm of human spinocerebellar ataxia type 6 Purkinje cells

    Get PDF
    Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease caused by a small polyglutamine (polyQ) expansion (control: 4–20Q; SCA6: 20–33Q) in the carboxyl(C)-terminal cytoplasmic domain of the α1A voltage-dependent calcium channel (Cav2.1). Although a 75–85-kDa Cav2.1 C-terminal fragment (CTF) is toxic in cultured cells, its existence in human brains and its role in SCA6 pathogenesis remains unknown. Here, we investigated whether the small polyQ expansion alters the expression pattern and intracellular distribution of Cav2.1 in human SCA6 brains. New antibodies against the Cav2.1 C-terminus were used in immunoblotting and immunohistochemistry. In the cerebella of six control individuals, the CTF was detected in sucrose- and SDS-soluble cytosolic fractions; in the cerebella of two SCA6 patients, it was additionally detected in SDS-insoluble cytosolic and sucrose-soluble nuclear fractions. In contrast, however, the CTF was not detected either in the nuclear fraction or in the SDS-insoluble cytosolic fraction of SCA6 extracerebellar tissues, indicating that the CTF being insoluble in the cytoplasm or mislocalized to the nucleus only in the SCA6 cerebellum. Immunohistochemistry revealed abundant aggregates in cell bodies and dendrites of SCA6 Purkinje cells (seven patients) but not in controls (n = 6). Recombinant CTF with a small polyQ expansion (rCTF-Q28) aggregated in cultured PC12 cells, but neither rCTF-Q13 (normal-length polyQ) nor full-length Cav2.1 with Q28 did. We conclude that SCA6 pathogenesis may be associated with the CTF, normally found in the cytoplasm, being aggregated in the cytoplasm and additionally distributed in the nucleus

    Protein Misdirection Inside and Outside Motor Neurons in Amyotrophic Lateral Sclerosis (ALS): A Possible Clue for Therapeutic Strategies

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive muscle wasting and weakness with no effective cure. Emerging evidence supports the notion that the abnormal conformations of ALS-linked proteins play a central role in triggering the motor neuron degeneration. In particular, mutant types of superoxide dismutase 1 (SOD1) and TAR DNA binding protein 43kDa (TDP-43) are key molecules involved in the pathogenesis of familial and sporadic ALS, respectively. The commonalities of the two proteins include a propensity to aggregate and acquire detrimental conformations through oligomerization, fragmentation, or post-translational modification that may drive abnormal subcellular localizations. Although SOD1 is a major cytosolic protein, mutated SOD1 has been localized to mitochondria, endoplasmic reticulum, and even the extracellular space. The nuclear exclusion of TDP-43 is a pathological hallmark for ALS, although the pathogenic priority remains elusive. Nevertheless, these abnormal behaviors based on the protein misfolding are believed to induce diverse intracellular and extracellular events that may be tightly linked to non-cell-autonomous motor neuron death. The generation of mutant- or misfolded protein-specific antibodies would help to uncover the distribution and propagation of the ALS-linked proteins, and to design a therapeutic strategy to clear such species. Herein we review the literature regarding the mislocalization of ALS-linked proteins, especially mutant SOD1 and TDP-43 species, and discuss the rationale of molecular targeting strategies including immunotherapy
    corecore