108 research outputs found

    Acoustophoresis method and apparatus

    Get PDF
    A method and apparatus are provided for acoustophoresis, i.e., the separation of species via acoustic waves. An ultrasonic transducer applies an acoustic wave to one end of a sample container containing at least two species having different acoustic absorptions. The wave has a frequency tuned to or harmonized with the point of resonance of the species to be separated. This wave caused the species to be driven to an opposite end of the sample container for removal. A second ultrasonic transducer may be provided to apply a second, oppositely directed acoustic wave to prevent undesired streaming. In addition, a radio frequency tuned to the mechanical resonance and coupled with a magnetic field can serve to identify a species in a medium comprising species with similar absorption coefficients, whereby an acoustic wave having a frequency corresponding to this gyrational rate can then be applied to sweep the identified species to one end of the container for removal

    Impact tolerant material

    Get PDF
    A material is protected from acoustic shock waves generated by impacting projectiles by means of a backing. The backing has an acoustic impedance that efficiently couples the acoustic energy out of the material

    Phase Length Optical Phase-Locked-Loop Sensor

    Get PDF
    The invention is a device that provides a high resolution measurement of the change in optical phase length from the device optical system source to an optical reflector. The invention consists of a optical phase locked loop that uses a laser beam as a carrier of an intensity modulated energy source. The novelty of the invention appears to lie in the overall combination of elements which provide high resolution without loss of wide dynamic range. The invention does not depend on coherent reflection from a target, and thus can measure targets that do not have special preparation or corner reflectors. The use of carrier modulation achieves high resolution without the problems of high speed pulse duration systems. Thus the invention has the advantages of simplicity, low cost, and small size without sacrificing resolution

    Quantitative nondestructive evaluation: Requirements for tomorrow's reliability

    Get PDF
    Quantitative Nondestructive Evaluation (QNDE) is the technology of measurement, analysis, and prediction of the state of material/structural systems for safety, reliability, and mission assurance. QNDE has impact on everyday life from the cars we drive, the planes we fly, the buildings we work or live in, literally to the infrastructure of our world. Here, researchers highlight some of the new sciences and technologies that are part of a safer, cost effective tomorrow. Specific technologies that are discussed are thermal QNDE of aircraft structural integrity, ultrasonic QNDE for materials characterization, and technology spinoffs from aerospace to the medical sector. In each case, examples are given of how new requirements result in enabling measurement technologies, which in turn change the boundaries of design/practice

    A Phase Insensitive Ultrasonic Receiver

    Get PDF
    Ultrasonic measurements of materials are usually obtained from an electrical conversion of an acoustic signal by a transducer. ln this paper, a conventional (phase sensitive) transducer and a new phase insensitive acoustoelectric converter called an AEC are contrasted. In particular, the AEC is shown to exhibit superior characteristics for many typical experiments and appears to have many applications in the Nondestructive Evaluation (NOE) area

    Electronics reliability and measurement technology

    Get PDF
    A summary is presented of the Electronics Reliability and Measurement Technology Workshop. The meeting examined the U.S. electronics industry with particular focus on reliability and state-of-the-art technology. A general consensus of the approximately 75 attendees was that "the U.S. electronics industries are facing a crisis that may threaten their existence". The workshop had specific objectives to discuss mechanisms to improve areas such as reliability, yield, and performance while reducing failure rates, delivery times, and cost. The findings of the workshop addressed various aspects of the industry from wafers to parts to assemblies. Key problem areas that were singled out for attention are identified, and action items necessary to accomplish their resolution are recommended

    Radio Frequency (RF) strain monitor

    Get PDF
    This invention relates to an apparatus for measuring strain in a structure. In particular, the invention detects strain in parts per million to over ten percent along an entire length (or other dimension) of a structure measuring a few millimeters to several kilometers. By using a propagation path bonded to the structure, the invention is not limited by the signal attenuation characteristics of the structure and thus frequencies in the megahertz to gigahertz range may be used to detect strain in part per million to over ten percent with high precision

    Method and apparatus for evaluating multilayer objects for imperfections

    Get PDF
    A multilayer object where the layers are arranged in a stacking direction is evaluated for imperfections such as voids, delaminations, and microcracks. First, an acoustic wave is transmitted into the object in the stacking direction via an appropriate transducer/waveguide combination. The wave propagates through the multilayer object and is received by another transducer/waveguide combination preferably located on the same surface as the transmitting combination. The received acoustic wave is correlated with the presence or absence of imperfections by generating pulse echo signals indicative of the received acoustic wave, wherein the successive signals form distinct groups over time. The respective peak amplitudes of each group are sampled and fitted to an exponential curve, wherein a substantial fit of approximately 80-90 percent indicates the absence of imperfections. Alternatively, the time interval between distinct groups can be measured, wherein equal intervals indicate the absence of imperfections and unequal intervals indicate the presence of imperfections

    Method of remotely characterizing thermal properties of a sample

    Get PDF
    A sample in a wind tunnel is radiated from a thermal energy source outside of the wind tunnel. A thermal imager system, also located outside of the wind tunnel, reads surface radiations from the sample as a function of time. The produced thermal images are characteristic of the heat transferred from the sample to the flow across the sample. In turn, the measured rates of heat loss of the sample are characteristic of the flow and the sample

    Method and apparatus for evaluating multilayer objects for imperfections

    Get PDF
    A multilayer object having multiple layers arranged in a stacking direction is evaluated for imperfections such as voids, delaminations and microcracks. First, an acoustic wave is transmitted into the object in the stacking direction via an appropriate transducer/waveguide combination. The wave propagates through the multilayer object and is received by another transducer/waveguide combination preferably located on the same surface as the transmitting combination. The received acoustic wave is correlated with the presence or absence of imperfections by, e.g., generating pulse echo signals indicative of the received acoustic wave, wherein the successive signals form distinct groups over time. The respective peak amplitudes of each group are sampled and curve fit to an exponential curve, wherein a substantial fit of approximately 80-90% indicates an absence of imperfections and a significant deviation indicates the presence of imperfections. Alternatively, the time interval between distinct groups can be measured, wherein equal intervals indicate the absence of imperfections and unequal intervals indicate the presence of imperfections
    • …
    corecore