3,921 research outputs found
A simple approach to the correlation of rotovibrational states in four-atomic molecules
The problem of correlation between quantum states of four-atomic molecules in
different geometrical configurations is reviewed in detail. A general, still
simple rule is obtained which allows one to correlate states of a linear
four-atomic molecule with those of any kind of non-linear four-atomic molecule.Comment: 16 pages (+8 figures), Postscript (ready to print!
Excited-state Forces within a First-principles Green's Function Formalism
We present a new first-principles formalism for calculating forces for
optically excited electronic states using the interacting Green's function
approach with the GW-Bethe Salpeter Equation method. This advance allows for
efficient computation of gradients of the excited-state Born-Oppenheimer
energy, allowing for the study of relaxation, molecular dynamics, and
photoluminescence of excited states. The approach is tested on photoexcited
carbon dioxide and ammonia molecules, and the calculations accurately describe
the excitation energies and photoinduced structural deformations.Comment: 2 figures and 2 table
Quantum initial condition sampling for linearized density matrix dynamics: Vibrational pure dephasing of iodine in krypton matrices
This paper reviews the linearized path integral approach for computing time
dependent properties of systems that can be approximated using a mixed
quantum-classical description. This approach is applied to studying vibrational
pure dephasing of ground state molecular iodine in a rare gas matrix. The
Feynman-Kleinert optimized harmonic approximation for the full system density
operator is used to sample initial conditions for the bath degrees of freedom.
This extremely efficient approach is compared with alternative initial
condition sampling techniques at low temperatures where classical initial
condition sampling yields dephasing rates that are nearly an order of magnitude
too slow compared with quantum initial condition sampling and experimental
results.Comment: 20 pages and 8 figure
Detection of interstellar CH_3
Observations with the Short Wavelength Spectrometer (SWS) onboard the {\it
Infrared Space Observatory} (ISO) have led to the first detection of the methyl
radical in the interstellar medium. The branch at 16.5
m and the (0) line at 16.0 m have been unambiguously detected
toward the Galactic center SgrA. The analysis of the measured bands gives a
column density of (8.02.4) cm and an excitation
temperature of K. Gaseous at a similarly low excitation
temperature and are detected for the same line of sight. Using
constraints on the column density obtained from and
visual extinction, the inferred abundance is
. The chemically related
molecule is not detected, but the pure rotational lines of are seen
with the Long Wavelength Spectrometer (LWS). The absolute abundances and the
and ratios are inconsistent with published
pure gas-phase models of dense clouds. The data require a mix of diffuse and
translucent clouds with different densities and extinctions, and/or the
development of translucent models in which gas-grain chemistry, freeze-out and
reactions of with polycyclic aromatic hydrocarbons and solid
aliphatic material are included.Comment: 2 figures. ApJL, Accepte
A geometrical approach to the dynamics of spinor condensates I: Hydrodynamics
In this work, we derive the equations of motion governing the hydrodynamics
of spin-F spinor condensates. We pursue a description based on standard
physical variables (total density and superfluid velocity), alongside 2F
`spin-nodes': unit vectors that describe the spin F state, and also exhibit the
point-group symmetry of a spinor condensate's mean-field ground state. The
hydrodynamic equations of motion consist of a mass continuity equation, 2F
Landau-Lifshitz equations for the spin-nodes, and a modified Euler equation. In
particular, we provide a generalization of the Mermin-Ho relation to spin one,
and find an analytic solution for the skyrmion texture in the incompressible
regime of a spin-half condensate. These results exhibit a beautiful geometrical
structure that underlies the dynamics of spinor condensates.Comment: 12 pages. First paper in two-part serie
Relaxation paths for single modes of vibrations in isolated molecules
A numerical simulation of vibrational excitation of molecules was devised,
and used to excite computational models of common molecules into a prescribed,
pure, normal vibration mode in the ground electronic state, with varying,
controlable energy content. The redistribution of this energy (either
non-chaotic or irreversible IVR) within the isolated, free molecule is then
followed in time with a view to determining the coupling strength between
modes. This work was triggered by the need to predict the general characters of
the infrared spectra to be expected from molecules in interstellar space, after
being excited by photon absorption or reaction with a radical. It is found that
IVR from a pure normal mode is very "restricted" indeed at energy contents of
one mode quantum or so. However, as this is increased, or when the excitation
is localized, our approach allows us to isolate, describe and quantify a number
of interesting phenomena, known to chemists and in non-linear mechanics, but
difficult to demonstrate experimentally: frequency dragging, mode locking or
quenching or, still, instability near a potential surface crossing, the first
step to generalized chaos as the energy content per mode is increased.Comment: 25 pages, 15 figures; accepted by J. Atom. Phys.
Quantum theory of an atom laser originating from a Bose-Einstein condensate or a Fermi gas in the presence of gravity
We present a 3D quantum mechanical theory of radio-frequency outcoupled atom
lasers from trapped atomic gases in the presence of the gravitational force.
Predictions for the total outcoupling rate as a function of the radio-frequency
and for the beam wave function are given. We establish a sum rule for the
energy integrated outcoupling, which leads to a separate determination of the
coupling strength between the atoms and the radiation field.
For a non-interacting Bose-Einstein condensate analytic solutions are derived
which are subsequently extended to include the effects of atomic interactions.
The interactions enhance interference effects in the beam profile and modify
the outcoupling rate of the atom laser. We provide a complete quantum
mechanical solution which is in line with experimental findings and allows to
determine the validity of commonly used approximative methods.
We also extend the formalism to a fermionic atom laser and analyze the effect
of superfluidity on the outcoupling of atoms.Comment: 13 pages, 8 figures, slightly expanded versio
Dynamics of Bulk vs. Nanoscale WS_2: Local Strain and Charging Effects
We measured the infrared vibrational properties of bulk and nanoparticle
WS in order to investigate the structure-property relations in these novel
materials. In addition to the symmetry-breaking effects of local strain,
nanoparticle curvature modifies the local charging environment of the bulk
material. Performing a charge analysis on the \emph{xy}-polarized E
vibrational mode, we find an approximate 1.5:1 intralayer charge difference
between the layered 2H material and inorganic fullerene-like (IF)
nanoparticles. This effective charge difference may impact the solid-state
lubrication properties of nanoscale metal dichalcogenides.Comment: 6 pages, 5 figure
Exact Coupling Coefficient Distribution in the Doorway Mechanism
In many--body and other systems, the physics situation often allows one to
interpret certain, distinct states by means of a simple picture. In this
interpretation, the distinct states are not eigenstates of the full
Hamiltonian. Hence, there is an interaction which makes the distinct states act
as doorways into background states which are modeled statistically. The crucial
quantities are the overlaps between the eigenstates of the full Hamiltonian and
the doorway states, that is, the coupling coefficients occuring in the
expansion of true eigenstates in the simple model basis. Recently, the
distribution of the maximum coupling coefficients was introduced as a new,
highly sensitive statistical observable. In the particularly important regime
of weak interactions, this distribution is very well approximated by the
fidelity distribution, defined as the distribution of the overlap between the
doorway states with interaction and without interaction. Using a random matrix
model, we calculate the latter distribution exactly for regular and chaotic
background states in the cases of preserved and fully broken time--reversal
invariance. We also perform numerical simulations and find excellent agreement
with our analytical results.Comment: 22 pages, 4 figure
A Spectroscopic Survey of Electronic Transitions of CH, CH, and CD
Electronic spectra of CH are measured in the cm
domain using cavity ring-down spectroscopy of a supersonically expanding
hydrocarbon plasma. In total, 19 (sub)bands of CH are presented, all
probing the vibrational manifold of the B electronically excited state.
The assignments are guided by electronic spectra available from matrix
isolation work, isotopic substitution experiments (yielding also spectra for
CH and CD), predictions from ab initio calculations as well as
rotational fitting and vibrational contour simulations using the available
ground state parameters as obtained from microwave experiments. Besides the
origin band, three non-degenerate stretching vibrations along the
linear backbone of the CH molecule are assigned: the mode
associated with the C-C bond vibration and the and modes
associated with CC triple bonds. For the two lowest and
bending modes, a Renner-Teller analysis is performed identifying the
() and both () and
() components. In addition, two higher lying bending
modes are observed, which are tentatively assigned as ()
and () levels. In the excitation region below the first
non-degenerate vibration (), some transitions are
observed that are assigned as even combination modes of low-lying bending
vibrations. The same holds for a transition found above the
level. From these spectroscopic data and the vibronic analysis a
comprehensive energy level diagram for the B state of CH is derived
and presented.Comment: Accepted for publication in The Journal of Physical Chemistry A (26
July 2016
- …