54 research outputs found

    The origin and evolution of the Tasmanian dolerites

    Get PDF
    [v.1]. Thesis -- [v.2]. Appendice

    Multi-scale isotopic heterogeneity reveals a complex magmatic evolution : An example from the wallundry suite granitoids of the lachlan fold belt, Australia

    Get PDF
    Open-system magmatic processes are expected to impart various sorts of isotopic heterogeneity upon the igneous rocks they produce. The range of processes under the "open-system " umbrella (e.g., simple two-component mixing, magma mingling, assimilation with fractional crystallization) cannot usually be uniquely identified using data from a single isotope system. The use of bulk-rock, mineral separate and in situ techniques and multiple isotope systems allows the characterization of isotopic variability at different sampling scales, illuminating details of the petrogenesis of a magmatic system. This approach has been applied to granitoids of the Wallundry Suite in the Lachlan Fold Belt, Australia. The Wallundry Suite exhibits variations in mineral assemblage, mineral composition and trends in bulk-rock major and trace element compositions consistent with the involvement of liquid-crystal sorting processes such as fractional crystallization. In situ paired O-Hf isotope data from zircon in six samples show an array indicating the isotopic evolution of the melt phase. Similarly, bulk-rock Sr-Nd-Hf isotope arrays support open-system magma evolution. These data combined with the petrographic observations and major and trace element geochemical variations suggest some form of assimilation-fractional crystallization process in the petrogenesis of the Wallundry Suite. Added complexity is revealed by two observations: 1) the isotopic variations are only weakly coupled to the lithology and major element compositions of the samples; and 2) there are distinguishable differences between the Hf isotope compositions of bulk-rock samples and those of the magmatic zircons they host. To varying degrees the rocks consistently show negative delta epsilon Hfbulk-zrc values (i.e., the bulk-rock compositions have less radiogenic Hf isotope values than their coexisting zircons). The preservation of distinctly low Nd and Hf isotope ratios in an Fe-Ti oxide mineral separate suggests that the bulk-rock vs. zircon discrepancy is caused by the presence of unmelted components derived from a contaminant of continental origin (i.e., a rock with low Sm/Nd and Lu/Hf and thus unradiogenic Nd and Hf). Evidently, a complex interplay of assimilation, crystallization and melt segregation is required to account for the data. This investigation demonstrates that such complexity can, nevertheless, be disentangled through comparison of complementary isotope data at multiple sampling scales.Peer reviewe

    Geochemistry of ODP Site 135-834 basalts

    No full text
    New major, trace element, and isotope data (Pb, Sr, and Nd) reveal an impressive compositional variation in the basalts recovered from Site 834. Major element compositions span almost the entire range observed in basalts from the modern axial systems of the Lau Basin, and variations are consistent with low-pressure fractionation of a mid-ocean-ridge-basalt (MORB)-like parent, in which plagioclase crystallization has been somewhat suppressed. Trace element compositions deviate from MORB in all but one unit (Unit 7) and show enrichments in large-ion-lithophile elements (LILEs) relative to high-field-strength elements (HFSEs) more typically associated with island-arc magmas. The Pb-isotope ratios define linear trends that extend from the field of Pacific MORB to highly radiogenic values similar to those observed in rocks from the northernmost islands of the Tofua Arc. The Sr-isotope compositions also show significant variation, and these too project from radiogenic values back into the field for Pacific MORB. The variations in key trace element and isotopic features are consistent with magma mixing between two relatively mafic melts: one represented by Pacific MORB, and the other by a magma similar to those erupted on 'Eua when it was part of the original Tongan arc, or perhaps members of the Lau Volcanic Group (LVG). Based on our model, the most radiogenic compositions (Units 2 and 8) represent approximately 50:50 mixtures of these MORB and arc end-members. Magma mixing requires that both components are simultaneously available, and implies that melts have not shown a compositional progression from arc-like to MORB-like with extension at this locality. Rather, it is apparent that essentially pristine MORB can erupt as one of the earliest products of backarc initiation. Indeed, repetition of isotopic and trace element signatures with depth suggests that eruptions have been triggered by periodic injections of fresh MORB melts into the source regions of these magmas. The slow and almost amagmatic extension of the original arc complex envisaged to explain the observed chemistry is also consistent with the horst-and-graben topography of the western side of the Lau Basin. Given the similarities between basalts erupted at the modern Lau Basin spreading centers and MORB from the Indian Ocean, the overwhelming evidence for involvement of mantle similar to Pacific MORB in the petrogenesis of basalts from Site 834 is a new and important observation. It indicates that the original arc was underlain by asthenospheric material derived from the Pacific mantle convection cell, and that this has somehow been replaced by Indian Ocean MORB during the last ~5.5 Ma

    Pb-, Sr-, and Nd-isotopic composition of basaltic rocks from the Lau Basin

    No full text
    New Pb, Sr, and Nd isotope data are presented for 64 samples from the six backarc sites drilled during Leg 135. Systematic changes in Pb and Sr compositions illustrate significant isotopic variations between and within sites as well as provide two key pieces of information. First, a recent influx of asthenosphere with Indian Ocean mantle affinities has occurred and has successfully displaced older "Pacific" asthenosphere from the mantle underlying the backarc region. Second, clear evidence exists for mixing between these two asthenospheric end-members and at least one "arc-like" component. The latter was not the same as most material currently erupting in the Tofua Arc, but it must have had a more radiogenic Pb-isotope signature, perhaps similar to rocks analyzed from the islands of Tafahi, and Niuatoputapu. A comparison between the isotopic variations and the tectonic setting of the drill sites reveals consistent and important information regarding the mantle dynamics beneath the evolving backarc basin. We propose a model in which the source of upwelling magmas changes from Pacific to Indian Ocean asthenosphere with the propagation of seafloor spreading, a model with important implications for the rate of mantle influx into this region. Although the chemistries of backarc magmas have been profoundly influenced by this process, an additional consequence is the advection of Indian Ocean asthenosphere into the sub-arc mantle source. The isotopic compositions of arc rocks from the vicinity have been reevaluated on the basis of the proposed mantle advection model. We suggest that the slab-derived flux of trace elements into the arc wedge has remained relatively uniform with time (i.e., ~40 Ma), so that the change in arc chemistry results from mantle source substitution, rather than from differences in the composition of the downgoing plate

    Geochemical analyses of ODP Leg 135 samples

    No full text
    Statistical analysis of X-ray fluorescence data acquired during Leg 135 indicates that this instrument produces data of comparable precision to good land-based laboratories. We also examined contamination of certain elements caused by crushing during the use of the tungsten carbide apparatus. Although the concentrations of most elements are not altered during crushing, the powders prepared on the ship should not be used in subsequent studies where key elements of the investigation include W, Co, Ta, Pb, and low levels of Nb
    • …
    corecore