10 research outputs found
Quantum Nonlocality with Spins in Diamond
In this thesis we experimentally investigate quantum nonlocality: entangled states of spatially separated objects. Entanglement is one of the most striking consequences of the quantum formalism developed in the 1920's; the predicted outcomes of independent measurements on entangled objects reveal strong correlations that cannot be explained by classical physics. Early on, such predictions led physicists to doubt the validity and completeness of quantum theory. At the same time, entanglement is a key resource for applications in quantum information processing and a pre-requisite for many tasks in quantum communication and computation.This thesis attempts to answer two application driven questions: Firstly, can we generate useful entangled states of solid state spins for applications in quantum information processing? Secondly, can we use such entangled states as a resource to teleport an unknown quantum state?Finally, we ask a foundational question: Are our entangled states indeed inconsistent with the classical notions of free choice, locality and realism? Can we prove this experimentally, under the minimal assumptions of a loophole-free Bell test? To answer these questions we use single spins in ultra-pure diamonds. In particular, we use the electronic and nuclear spins associated with single nitrogen-vacancy (NV) defects. The NV centre is a point defect in diamond, consisting of a substitutional nitrogen (N) atom and a neighbouring missing carbon atom (vacancy, V). The NV centre possesses bound electronic states, whose energy levels lie well within the bandgap of the diamond host and whose spin degree of freedom can be used as a quantum bit (qubit). Because of the large diamond bandgap and the 99% spin free carbon-12 environment, the electronic spin qubit has exceptional coherence properties even at room temperature. Optical and microwave fields allow control of the electronic spin, which in turn allows control of nearby nuclear spins (the host nitrogen nuclear spin, and nearby carbon-13 spins). At liquid helium temperatures, spin-preserving optical transitions provide a powerful optical interface to the electronic spin, allowing, for example, projective readout of the spin state.By employing a protocol where entanglement is heralded by the detection of a single photon from each of two NV centres in diamonds separated by three metres, we find we can answer the first question in the affirmative. We show for the first time heralded entanglement between solid state quantum systems separated by a human-scale distance.Then, by combining the heralded entanglement with a deterministic local Bell state measurement and fast feed-forward, we show for the first time unconditional quantum teleportation over human-scale distances. We teleport an unknown quantum state from a nuclear spin in one diamond to an electronic spin in a diamond three meters away.Finally, by employing techniques from the previous experiments, we implement the first loophole-free Bell test. We separate two diamonds by 1.3 kilometres and optimize all operational fidelities, collection efficiencies and rates. This allows us to generate heralded entanglement between them approximately once an hour. The distance provides us with time to read out the electronic spin state in each diamond, faster than any lightlike signal could travel between them. The high-fidelity entangled state preparation and spin readout are sufficient to violate the Clauser-Horne-Shimony-Holt Bell-inequality. Combined with fast random number generators and a robust statistical analysis, we find a significant rejection of the local-realist hypothesis, without requiring additional experimental assumptions.The results in this thesis open the door to various applications in quantum information processing. In particular, a remote photonic entangling operation may enable future quantum networks. In such a network the nodes would be formed by the NV centre's combined electronic and nuclear spin register. The nodes would be linked by photonic entanglement operations. Such a network could be used for long distance secure communication, provide a connection between separated quantum computers, or form the basis of a fault tolerant quantum computer by itself. Furthermore, a loophole-free Bell test demonstrates the possibility to do device independent randomness generation and key distribution, that could form the basis for future secure communication channels.QID/Hanson La
Quantum rekenen: Quantumcomputers en qubits
De quantum computer is een computer gebaseerd op quantum bits, kortweg qubits. Dat zijn bits die fysiek gemaakt zijn van quantum systemen, met de speciale eigenschap dat ze in een superpositie tussen twee toestanden kunnen zijn.QN/Quantum NanoscienceApplied Science
Hybrid Integration of Silicon Photonic Devices on Lithium Niobate for Optomechanical Wavelength Conversion
The rapid development of quantum information processors has accelerated the demand for technologies that enable quantum networking. One promising approach uses mechanical resonators as an intermediary between microwave and optical fields. Signals from a superconducting, topological, or spin qubit processor can then be converted coherently to optical states at telecom wavelengths. However, current devices built from homogeneous structures suffer from added noise and a small conversion efficiency. Combining advantageous properties of different materials into a heterogeneous design should allow for superior quantum transduction devices - so far these hybrid approaches have however been hampered by complex fabrication procedures. Here we present a novel integration method, based on previous pick-and-place ideas, that can combine independently fabricated device components of different materials into a single device. The method allows for a precision alignment by continuous optical monitoring during the process. Using our method, we assemble a hybrid silicon-lithium niobate device with state-of-the-art wavelength conversion characteristics.QN/Groeblacher La
Design of a life-cycle chain from biomass acquisition and transport to the production sythesis gas for Shell Middle Distillate Products through lagre-scale gasification of biomass in the Rotterdam Harbour area
Document(en) uit de collectie Chemische ProcestechnologieDelftChemTechApplied Science
Proposal for optomechanical quantum teleportation
We present a discrete-variable quantum teleportation scheme using pulsed optomechanics. In our proposal, we demonstrate how an unknown optical input state can be transferred onto the joint state of a pair of mechanical oscillators, without physically interacting with one another. We further analyze how experimental imperfections will affect the fidelity of the teleportation and highlight how our scheme can be realized in current state-of-the-art optomechanical systems.QN/Groeblacher La
Plan of Idlewood, Range Road, Cumberland, Maine, 1998
Plan of Idlewood, Range Road, Cumberland, Maine was created by Richard A. Manthorne in 1998. Scale 1 =100\u27.https://digitalmaine.com/cumberland_plans/1213/thumbnail.jp
Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout
Silicon quantum dot spin qubits provide a promising platform for large-scale quantum computation because of their compatibility with conventional CMOS manufacturing and the long coherence times accessible using 28Si enriched material. A scalable error-corrected quantum processor, however, will require control of many qubits in parallel, while performing error detection across the constituent qubits. Spin resonance techniques are a convenient path to parallel two-axis control, while Pauli spin blockade can be used to realize local parity measurements for error detection. Despite this, silicon qubit implementations have so far focused on either single-spin resonance control, or control and measurement via voltage-pulse detuning in the two-spin singlet-triplet basis, but not both simultaneously. Here, we demonstrate an integrated device platform incorporating a silicon metal-oxide-semiconductor double quantum dot that is capable of single-spin addressing and control via electron spin resonance, combined with high-fidelity spin readout in the singlet-triplet basis.QCD/Veldhorst LabQuTec
Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks
We report on the fabrication and characterization of a Fabry-Perot microcavity enclosing a thin diamond membrane at cryogenic temperatures. The cavity is designed to enhance resonant emission of single nitrogen-vacancy centers by allowing spectral and spatial tuning while preserving the optical properties observed in bulk diamond. We demonstrate cavity finesse at cryogenic temperatures within the range of F ¼ 4000–12 000 and find a sub-nanometer cavity stability. Modeling shows that coupling nitrogen-vacancy centers to these cavities could lead to an increase in remote entanglement success rates by three orders of magnitude.QID/Hanson LabQCD/Vandersypen LabQN/Hanson La
Loophole-free Bell test using electron spins in diamond: Second experiment and additional analysis
The recently reported violation of a Bell inequality using entangled electronic spins in diamonds (Hensen et al., Nature 526, 682–686) provided the first loophole-free evidence against local-realist theories of nature. Here we report on data from a second Bell experiment using the same experimentalsetup with minor modifications. We find a violation of the CHSH-Bell inequality of 2.35 ± 0.18, in agreement with the first run, yielding an overall value of S = 2.38 ± 0.14. We calculate the resulting P-values of the second experiment and of the combined Bell tests. We provide an additional analysis of the distribution of settings choices recorded during the two tests, finding that the observeddistributions are consistent with uniform settings for both tests. Finally, we analytically study the effect of particular models of random number generator (RNG) imperfection on our hypothesis test. We find that the winning probability per trial in the CHSH game can be bounded knowing only the mean of theRNG bias. This implies that our experimental result is robust for any model underlying the estimated average RNG bias, for random bits produced up to 690 ns too early by the random number generator.QID/Hanson LabQN/Quantum TransportALG/GeneralQID/Wehner GroupQuantum Information and SoftwareQuantum Internet DivisionQID/Taminiau LabSupport TN
Loophole-free Bell test using electron spins in diamond: Second experiment and additional analysis
The recently reported violation of a Bell inequality using entangled electronic spins in diamonds (Hensen et al., Nature 526, 682–686) provided the first loophole-free evidence against local-realist theories of nature. Here we report on data from a second Bell experiment using the same experimentalsetup with minor modifications. We find a violation of the CHSH-Bell inequality of 2.35 ± 0.18, in agreement with the first run, yielding an overall value of S = 2.38 ± 0.14. We calculate the resulting P-values of the second experiment and of the combined Bell tests. We provide an additional analysis of the distribution of settings choices recorded during the two tests, finding that the observeddistributions are consistent with uniform settings for both tests. Finally, we analytically study the effect of particular models of random number generator (RNG) imperfection on our hypothesis test. We find that the winning probability per trial in the CHSH game can be bounded knowing only the mean of theRNG bias. This implies that our experimental result is robust for any model underlying the estimated average RNG bias, for random bits produced up to 690 ns too early by the random number generator.QID/Hanson LabQN/Quantum TransportALG/GeneralQID/Wehner GroupQuantum Information and SoftwareQuantum Internet DivisionQID/Taminiau LabSupport TN