12 research outputs found

    Dislocation and Indium Droplet Related Emission Inhomogeneities in InGaN LEDs

    Get PDF
    This report classifies emission inhomogeneities that manifest in InGaN quantum well blue light-emitting diodes grown by plasma-assisted molecular beam epitaxy on free-standing GaN substrates. By a combination of spatially resolved electroluminescence and cathodoluminescence measurements, atomic force microscopy, scanning electron microscopy and hot wet KOH etching, the identified inhomogeneities are found to fall in four categories. Labeled here as type I through IV, they are distinguishable by their size, density, energy, intensity, radiative and electronic characteristics and chemical etch pits which correlates them with dislocations. Type I exhibits a blueshift of about 120 meV for the InGaN quantum well emission attributed to a perturbation of the active region, which is related to indium droplets that form on the surface in the metal-rich InGaN growth condition. Specifically, we attribute the blueshift to a decreased growth rate of and indium incorporation in the InGaN quantum wells underneath the droplet which is postulated to be the result of reduced incorporated N species due to increased N2_{2} formation. The location of droplets are correlated with mixed type dislocations for type I defects. Types II through IV are due to screw dislocations, edge dislocations, and dislocation bunching, respectively, and form dark spots due to leakage current and nonradiative recombination.Comment: 11 pages, 8 figure

    Role of Metallic Adlayer in Limiting Ge Incorporation into GaN

    No full text
    Atomically thin metal adlayers are used as surfactants in semiconductor crystal growth. The role of the adlayer in the incorporation of dopants in GaN is completely unexplored, probably because n-type doping of GaN with Si is relatively straightforward and can be scaled up with available Si atomic flux in a wide range of dopant concentrations. However, a surprisingly different behavior of the Ge dopant is observed, and the presence of atomically thin gallium or an indium layer dramatically affects Ge incorporation, hindering the fabrication of GaN:Ge structures with abrupt doping profiles. Here, we show an experimental study presenting a striking improvement in sharpness of the Ge doping profile obtained for indium as compared to the gallium surfactant layer during GaN-plasma-assisted molecular beam epitaxy. We show that the atomically thin indium surfactant layer promotes the incorporation of Ge in contrast to the gallium surfactant layer, which promotes segregation of Ge to the surface and Ge crystallite formation. Understanding the role of the surfactant is essential to control GaN doping and to obtain extremely high n-type doped III-nitride layers using Ge, because doping levels >1020 cm−3 are not easily available with Si

    Dependence of InGaN Quantum Well Thickness on the Nature of Optical Transitions in LEDs

    No full text
    The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses—2.6, 6.5, 7.8, 12, and 15 nm. In the case of the thinnest QW, we observed a typical effect of screening of the built-in field manifested with a blue shift of the electroluminescence spectrum at high current densities, whereas the LEDs with 6.5 and 7.8 nm QWs exhibited extremely high blue shift at low current densities accompanied by complex spectrum with multiple optical transitions. On the other hand, LEDs with the thickest QWs showed a stable, single-peak emission throughout the whole current density range. In order to obtain insight into the physical mechanisms behind this complex behavior, we performed self-consistent Schrodinger–Poisson simulations. We show that variation in the emission spectra between the samples is related to changes in the carrier density and differences in the magnitude of screening of the built-in field inside QWs. Moreover, we show that the excited states play a major role in carrier recombination for all QWs, apart from the thinnest one

    Negative Magnetoresistivity in Highly Doped n-Type GaN

    No full text
    This paper presents low-temperature measurements of magnetoresistivity in heavily doped n-type GaN grown by basic GaN growth technologies: molecular beam epitaxy, metal-organic vapor phase epitaxy, halide vapor phase epitaxy and ammonothermal. Additionally, GaN crystallized by High Nitrogen Pressure Solution method was also examined. It was found that all the samples under study exhibited negative magnetoresistivity at a low temperature (10 K T φ for heavily doped n-type GaN. The obtained τφ value is proportional to T−1.34, indicating that the electron–electron interaction is the main dephasing mechanism for the free carriers

    Influence of Growth Polarity Switching on the Optical and Electrical Properties of GaN/AlGaN Nanowire LEDs

    No full text
    For the development and application of GaN-based nanowire structures, it is crucial to understand their fundamental properties. In this work, we provide the nano-scale correlation of the morphological, electrical, and optical properties of GaN/AlGaN nanowire light emitting diodes (LEDs), observed using a combination of spatially and spectrally resolved cathodoluminescence spectroscopy and imaging, electron beam-induced current microscopy, the nano-probe technique, and scanning electron microscopy. To complement the results, the photo- and electro-luminescence were also studied. The interpretation of the experimental data was supported by the results of numerical simulations of the electronic band structure. We characterized two types of nanowire LEDs grown in one process, which exhibit top facets of different shapes and, as we proved, have opposite growth polarities. We show that switching the polarity of nanowires (NWs) from the N- to Ga-face has a significant impact on their optical and electrical properties. In particular, cathodoluminescence studies revealed quantum wells emissions at about 3.5 eV, which were much brighter in Ga-polar NWs than in N-polar NWs. Moreover, the electron beam-induced current mapping proved that the p–n junctions were not active in N-polar NWs. Our results clearly indicate that intentional polarity inversion between the n- and p-type parts of NWs is a potential path towards the development of efficient nanoLED NW structures

    Bidirectional light-emitting diode as a visible light source driven by alternating current

    No full text
    Abstract Gallium nitride-based light-emitting diodes have revolutionized the lighting market by becoming the most energy-efficient light sources. However, the power grid, in example electricity delivery system, is built based on alternating current, which raises problems for directly driving light emitting diodes that require direct current to operate effectively. In this paper, we demonstrate a proof-of-concept device that addresses this fundamental issue – a gallium nitride-based bidirectional light-emitting diode. Its structure is symmetrical with respect to the active region, which, depending on the positive or negative bias, allows for the injection of either electrons or holes from each side. It is composed of two tunnel junctions that surround the active region. In this work, the optical and electrical properties of bidirectional light emitting diodes are investigated under direct and alternating current conditions. We find that the light is emitted in both directions of the supplied current, contrary to conventional light emitting diodes; hence, bidirectional light-emitting diodes can be considered a semiconductor light source powered directly with alternating current. In addition, we show that bidirectional light-emitting diodes can be stacked vertically to multiply the optical power achieved from a single device
    corecore