353 research outputs found
Use of IC information in Japanese financial firms
Purpose â The purpose of this paper is to explore the perceptions of: how Japanese financial firms (JFF) acquire and use company intellectual capital (IC) information in their common routine equity investment decisions, how this activity contributes to knowledge creation in the JFFs, and how investee company knowledge creation is affected by the JFFs.<p></p>
Design/methodology/approach â The research employed a multi-case design, using four JFF cases. The investigation was performed in terms of Nonaka and Toyama's âtheory of the knowledge creating firmâ.<p></p>
Findings â IC information contributed to earnings estimates and company valuation. Emotional information contributed to JFF feelings and confidence in their information use and valuation. JFF knowledge was an important component of the key interacting and informed contexts used by JFFs. This generated opportunities to improve disclosure and accountability between JFFs and their investee companies. Common patterns of behaviour across the JFFs were counterbalanced by variety and differences noted in JFF behaviour.<p></p>
Practical implications â The findings provide important insights into how JFF knowledge creating patterns could limit or progress a common language of communication between companies and markets on the subject of IC. This could impact on the quality of corporate disclosure and accountability processes.<p></p>
Originality/value â The paper demonstrates that there is a need for further use of qualitative studies of financial market behavior. Especially in the area of understanding the communication of IC between firms and financial markets, the potential of using sociology of finance approaches appears to be considerable
Laboratory diagnosis of Lyme neuroborreliosis: a comparison of three CSF anti-Borrelia antibody assays
The diagnosis of Lyme neuroborreliosis (LNB) requires the detection of intrathecal synthesis of Borrelia-specific antibodies, but in very early disease, the sensitivity may be low. We compared the performance of the second-generation IDEIA Lyme Neuroborreliosis test (Oxoid), based on purified native flagellum antigen, with two newly developed tests based on several recombinant antigens for the diagnosis of LNB. Patients investigated for LNB during 2003 through 2007 were included (nâ=â175); 52 with definite LNB, four with possible LNB and 119 non-LNB patients. Serum and cerebrospinal fluid (CSF) were analysed with the IDEIA Lyme Neuroborreliosis (Oxoid), VIDAS Lyme IgG (bioMĂ©rieux) and recomBead Borrelia IgM and IgG (Mikrogen) assays. Intrathecal antibody indices (AIs) were calculated according to the manufacturersâ protocols. The IDEIA test performed with an overall sensitivity (IgM and IgG AIs taken together) of 88 % and a specificity of 99 %. The VIDAS test showed a sensitivity of 86 % and a specificity of 97 %. An overall sensitivity of 100 % and a specificity of 97 % were achieved by the recomBead test. We conclude that the three assays performed equally well regarding specificity, but our data suggest an improved diagnostic sensitivity with the recomBead Borrelia test
Diagnostic performance of image navigated coronary CMR angiography in patients with coronary artery disease
Abstract Background The use of coronary MR angiography (CMRA) in patients with coronary artery disease (CAD) remains limited due to the long scan times, unpredictable and often non-diagnostic image quality secondary to respiratory motion artifacts. The purpose of this study was to evaluate CMRA with image-based respiratory navigation (iNAV CMRA) and compare it to gold standard invasive x-ray coronary angiography in patients with CAD. Methods Consecutive patients referred for CMR assessment were included to undergo iNAV CMRA on a 1.5 T scanner. Coronary vessel sharpness and a visual score were assigned to the coronary arteries. A diagnostic reading was performed on the iNAV CMRA data, where a lumen narrowing >50% was considered diseased. This was compared to invasive x-ray findings. Results Image-navigated CMRA was performed in 31 patients (77% male, 56 ± 14 years). The iNAV CMRA scan time was 7 min:21 s ± 0 min:28 s. Out of a possible 279 coronary segments, 26 segments were excluded from analysis due to stents or diameter less than 1.5 mm, resulting in a total of 253 coronary segments. Diagnostic image quality was obtained for 98% of proximal coronary segments, 94% of middle segments, and 91% of distal coronary segments. The sensitivity and specificity was 86% and 83% per patient, 80% and 92% per vessel and 73% and 95% per segment. Conclusion In this study, iNAV CMRA offered a very good diagnostic performance when compared against invasive x-ray angiography. Due to the short and predictable scan time it can add clinical value as a part of a comprehensive CAD assessment protocol
See-saw rocking: an in vitro model for mechanotransduction research
In vitro mechanotransduction studies, uncovering the basic science of the response of cells to mechanical forces, are essential for progress in tissue engineering and its clinical application. Many varying investigations have described a multitude of cell responses; however, as the precise nature and magnitude of the stresses applied are infrequently reported and rarely validated, the experiments are often not comparable, limiting research progress. This paper provides physical and biological validation of a widely available fluid stimulation device, a see-saw rocker, as an in vitro model for cyclic fluid shear stress mechanotransduction. This allows linkage between precisely characterized stimuli and cell monolayer response in a convenient six-well plate format. Models of one well were discretized and analysed extensively using computational fluid dynamics to generate convergent, stable and consistent predictions of the cyclic fluid velocity vectors at a rocking frequency of 0.5 Hz, accounting for the free surface. Validation was provided by comparison with flow velocities measured experimentally using particle image velocimetry. Qualitative flow behaviour was matched and quantitative analysis showed agreement at representative locations and time points. Maximum shear stress of 0.22 Pa was estimated near the well edge, and time-average shear stress ranged between 0.029 and 0.068 Pa. Human tenocytes stimulated using the system showed significant increases in collagen and GAG secretion at 2 and 7 day time points. This in vitro model for mechanotransduction provides a versatile, flexible and inexpensive method for the fluid shear stress impact on biological cells to be studied
Flight of the dragonflies and damselflies
This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes
Recommended from our members
Association between amygdala reactivity and a dopamine transporter gene polymorphism
Essential for detection of relevant external stimuli and for fear processing, the amygdala is under modulatory influence of dopamine (DA). The DA transporter (DAT) is of fundamental importance for the regulation of DA transmission by mediating reuptake inactivation of extracellular DA. This study examined if a common functional variable number tandem repeat polymorphism in the 3âČ untranslated region of the DAT gene (SLC6A3) influences amygdala function during the processing of aversive emotional stimuli. Amygdala reactivity was examined by comparing regional cerebral blood flow, measured with positron emission tomography and [15O]water, during exposure to angry and neutral faces, respectively, in a Swedish sample comprising 32 patients with social anxiety disorder and 17 healthy volunteers. In a separate US sample, comprising 85 healthy volunteers studied with blood oxygen level-dependent functional magnetic resonance imaging, amygdala reactivity was assessed by comparing the activity during exposure to threatening faces and neutral geometric shapes, respectively. In both the Swedish and the US sample, 9-repeat carriers displayed higher amygdala reactivity than 10-repeat homozygotes. The results suggest that this polymorphism contributes to individual variability in amygdala reactivity
- âŠ