117 research outputs found

    Vernier spectrometer using counter-propagating soliton microcombs

    Get PDF
    Acquisition of laser frequency with high resolution under continuous and abrupt tuning conditions is important for sensing, spectroscopy and communications. Here, a single microresonator provides rapid and broad-band measurement of frequencies across the optical C-band with a relative frequency precision comparable to conventional dual frequency comb systems. Dual-locked counter-propagating solitons having slightly different repetition rates are used to implement a Vernier spectrometer. Laser tuning rates as high as 10 THz/s, broadly step-tuned lasers, multi-line laser spectra and also molecular absorption lines are characterized using the device. Besides providing a considerable technical simplification through the dual-locked solitons and enhanced capability for measurement of arbitrarily tuned sources, this work reveals possibilities for chip-scale spectrometers that greatly exceed the performance of table-top grating and interferometer-based devices

    Broadband quantum-dot frequency-modulated comb laser

    Full text link
    Frequency-modulated (FM) laser combs, which offer a periodic quasi-continuous-wave output and a flat-topped optical spectrum, are emerging as a promising solution for wavelength-division multiplexing applications, precision metrology, and ultrafast optical ranging. The generation of FM combs relies on spatial hole burning, group velocity dispersion (GVD), Kerr nonlinearity, and four-wave mixing (FWM). While FM combs have been widely observed in quantum cascade Fabry-Perot (FP) lasers, the requirement for a low-dispersion FP cavity can be a challenge in platforms where the waveguide dispersion is mainly determined by the material. Here we report a 60 GHz quantum-dot (QD) mode-locked laser in which both the amplitude-modulated (AM) and the FM comb can be generated independently. The high FWM efficiency of -5 dB allows the QD laser to generate an FM comb efficiently. We also demonstrate that the Kerr nonlinearity can be practically engineered to improve the FM comb bandwidth without the need for GVD engineering. The maximum 3-dB bandwidth that our QD platform can deliver is as large as 2.2 THz. This study gives novel insights into the improvement of FM combs and paves the way for small-footprint, electrically-pumped, and energy-efficient frequency combs for silicon photonic integrated circuits (PICs)

    Unveiling the dynamical diversity of quantum dot lasers subject to optoelectronic feedback

    Full text link
    This paper investigates experimentally and numerically the nonlinear dynamics of an epitaxial quantum dot laser on silicon subjected to optoelectronic feedback. Experimental results showcase a diverse range of dynamics, encompassing square wave patterns, quasi-chaotic states, and mixed waveforms exhibiting fast and slow oscillations. These measurements unequivocally demonstrate that quantum dot lasers on silicon readily and stably generate a more extensive repertoire of nonlinear dynamics compared to quantum well lasers. This pronounced sensitivity of quantum dot lasers to optoelectronic feedback represents a notable departure from their inherent insensitivity to optical feedback arising from reflections. Moreover, based on the Ikeda-like model, our simulations illustrate that the inherent characteristics of quantum dot lasers on silicon enable rapid and diverse dynamic transformations in response to optoelectronic feedback. The emergence of these exotic dynamics paves the way for further applications like integrated optical clocks, optical logic, and optical computing

    Soliton pulse pairs at multiple colors in normal dispersion microresonators

    Full text link
    Soliton microcombs are helping to advance the miniaturization of a range of comb systems. These combs mode lock through the formation of short temporal pulses in anomalous dispersion resonators. Here, a new microcomb is demonstrated that mode locks through the formation of pulse pairs in normal-dispersion coupled-ring resonators. Unlike conventional microcombs, pulses in this system cannot exist alone, and instead must phase lock in pairs to form a bright soliton comb. Also, the pulses can form at recurring spectral windows and the pulses in each pair feature different optical spectra. This pairwise mode-locking modality extends to higher dimensions and we demonstrate 3-ring systems in which 3 pulses mode lock through alternating pairwise pulse coupling. The results are demonstrated using the new CMOS-foundry platform that has not previously produced bright solitons on account of its inherent normal dispersion. The ability to generate multi-color pulse pairs over multiple rings is an important new feature for microcombs. It can extend the concept of all-optical soliton buffers and memories to multiple storage rings that multiplex pulses with respect to soliton color and that are spatially addressable. The results also suggest a new platform for the study of quantum combs and topological photonics

    Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-QQ microresonators

    Get PDF
    Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superior coherence. Here, we bridge conventional semiconductor lasers and coherent optical systems using CMOS-foundry-fabricated microresonators with record high QQ factor over 260 million and finesse over 42,000. Five orders-of-magnitude noise reduction in the pump laser is demonstrated, and for the first time, fundamental noise below 1 Hz2^2 Hz−1^{-1} is achieved in an electrically-pumped integrated laser. Moreover, the same configuration is shown to relieve dispersion requirements for microcomb generation that have handicapped certain nonlinear platforms. The simultaneous realization of record-high QQ factor, highly coherent lasers and frequency combs using foundry-based technologies paves the way for volume manufacturing of a wide range of coherent optical systems.Comment: 19 pages, 11 figure

    Probing material absorption and optical nonlinearity of integrated photonic materials

    Full text link
    Optical microresonators with high quality (QQ) factors are essential to a wide range of integrated photonic devices. Steady efforts have been directed towards increasing microresonator QQ factors across a variety of platforms. With success in reducing microfabrication process-related optical loss as a limitation of QQ, the ultimate attainable QQ, as determined solely by the constituent microresonator material absorption, has come into focus. Here, we report measurements of the material-limited QQ factors in several photonic material platforms. High-QQ microresonators are fabricated from thin films of SiO2_2, Si3_3N4_4, Al0.2_{0.2}Ga0.8_{0.8}As and Ta2_2O5_5. By using cavity-enhanced photothermal spectroscopy, the material-limited QQ is determined. The method simultaneously measures the Kerr nonlinearity in each material and reveals how material nonlinearity and ultimate QQ vary in a complementary fashion across photonic materials. Besides guiding microresonator design and material development in four material platforms, the results help establish performance limits in future photonic integrated systems.Comment: Maodong Gao, Qi-Fan Yang and Qing-Xin Ji contributed equally to this work. 9 pages, 4 figures, 1 tabl

    Engineered zero-dispersion microcombs using CMOS-ready photonics

    Full text link
    Normal group velocity dispersion (GVD) microcombs offer high comb line power and high pumping efficiency compared to bright pulse microcombs. The recent demonstration of normal GVD microcombs using CMOS-foundry-produced microresonators is an important step towards scalable production. However, the chromatic dispersion of CMOS devices is large and impairs generation of broadband microcombs. Here, we report the development of a microresonator in which GVD is reduced due to a couple-ring resonator configuration. Operating in the turnkey self-injection-locking mode, the resonator is hybridly integrated with a semiconductor laser pump to produce high-power-efficiency combs spanning a bandwidth of 9.9 nm (1.22 THz) centered at 1560 nm, corresponding to 62 comb lines. Fast, linear optical sampling of the comb waveform is used to observe the rich set of near-zero GVD comb behaviors, including soliton molecules, switching waves (platicons) and their hybrids. Tuning of the 20 GHz repetition rate by electrical actuation enables servo locking to a microwave reference, which simultaneously stabilizes the comb repetition rate, offset frequency and temporal waveform. This hybridly integrated system could be used in coherent communications or for ultra-stable microwave signal generation by two-point optical frequency division.Comment: 8 pages, 4 figure
    • …
    corecore