Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-QQ microresonators

Abstract

Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superior coherence. Here, we bridge conventional semiconductor lasers and coherent optical systems using CMOS-foundry-fabricated microresonators with record high QQ factor over 260 million and finesse over 42,000. Five orders-of-magnitude noise reduction in the pump laser is demonstrated, and for the first time, fundamental noise below 1 Hz2^2 Hz1^{-1} is achieved in an electrically-pumped integrated laser. Moreover, the same configuration is shown to relieve dispersion requirements for microcomb generation that have handicapped certain nonlinear platforms. The simultaneous realization of record-high QQ factor, highly coherent lasers and frequency combs using foundry-based technologies paves the way for volume manufacturing of a wide range of coherent optical systems.Comment: 19 pages, 11 figure

    Similar works