22 research outputs found

    A Survey on Unusual Event Detection in Videos

    Get PDF
    As the usage of CCTV cameras in outdoor and indoor locations has increased significantly, one needs to design a system to detect the unusual events, at the time of its occurrence. Computer vision is used for Human Action recognition, which has been widely implemented in the systems, but unusual event detection is lately entering into the limelight. In order to detect the unusual events, supervised techniques, semi-supervised techniques and unsupervised techniques have been adopted. Social force model (SFM) and Force field are used to model the interaction among crowds. Only normal events training samples is not sufficient for detection of unusual events. Double sparse representation has been used as a solution to this, which includes normal and abnormal training data. To develop an intelligent video surveillance system, behavioural representation and behavioural modelling techniques are used. Various machine learning techniques to identify unusual events include: Graph modelling and matching, object trajectory based, object silhouettes based and pixel based approaches. Kullback–Leibler (KL) divergence, Quaternion Discrete Cosine Transformation (QDCT) analysis, hidden Markov model (HMM) and histogram of oriented contextual gradient (HOCG) descriptor are some of the models used are used for detecting unusual events. This paper briefly discusses the above mentioned strategies and pay attention on their pros and cons

    The bii4africa dataset of faunal and floral population intactness estimates across Africa's major land uses

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordCode availability: R code for calculating aggregated intactness scores for a focal region (e.g., ecoregion or country) and/or taxonomic group can be downloaded with the bii4africa dataset on Figshare; see Data Records section.Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species' population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate 'intactness scores': the remaining proportion of an 'intact' reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region's major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems.Jennifer Ward Oppenheimer Research Gran
    corecore