2,561 research outputs found

    Elimination of Clock Jitter Noise in Spaceborn Laser Interferometers

    Get PDF
    Space gravitational wave detectors employing laser interferometry between free-flying spacecraft differ in many ways from their laboratory counterparts. Among these differences is the fact that, in space, the end-masses will be moving relative to each other. This creates a problem by inducing a Doppler shift between the incoming and outgoing frequencies. The resulting beat frequency is so high that its phase cannot be read to sufficient accuracy when referenced to state-of-the-art space-qualified clocks. This is the problem that is addressed in this paper. We introduce a set of time-domain algorithms in which the effects of clock jitter are exactly canceled. The method employs the two-color laser approach that has been previously proposed, but avoids the singularities that arise in the previous frequency-domain algorithms. In addition, several practical aspects of the laser and clock noise cancellation schemes are addressed.Comment: 20 pages, 5 figure

    Brief Announcement: The Fault-Tolerant Cluster-Sending Problem

    Get PDF
    The development of fault-tolerant distributed systems that can tolerate Byzantine behavior has traditionally been focused on consensus protocols, which support fully-replicated designs. For the development of more sophisticated high-performance Byzantine distributed systems, more specialized fault-tolerant communication primitives are necessary, however. In this brief announcement, we identify the cluster-sending problem - the problem of sending a message from one Byzantine cluster to another Byzantine cluster in a reliable manner - as such an essential communication primitive. We not only formalize this fundamental problem, but also establish lower bounds on the complexity of this problem under crash failures and Byzantine failures. Furthermore, we develop practical cluster-sending protocols that meet these lower bounds and, hence, have optimal complexity. As such, our work provides a strong foundation for the further exploration of novel designs that address challenges encountered in fault-tolerant distributed systems

    Pulsar timing and gravitational waves

    Get PDF
    In the last few years, several researchers have used timing data from pulsars to search for ultra-low frequency (ULF) gravitational waves (waves at periods from a few days to a few years), especially for the waves making up the stochastic cosmic background such waves. How these limits are obtained are discussed and several precautions are pointed out that must be taken in the analysis of these data

    Coordination-Free Byzantine Replication with Minimal Communication Costs

    Get PDF
    State-of-the-art fault-tolerant and federated data management systems rely on fully-replicated designs in which all participants have equivalent roles. Consequently, these systems have only limited scalability and are ill-suited for high-performance data management. As an alternative, we propose a hierarchical design in which a Byzantine cluster manages data, while an arbitrary number of learners can reliable learn these updates and use the corresponding data. To realize our design, we propose the delayed-replication algorithm, an efficient solution to the Byzantine learner problem that is central to our design. The delayed-replication algorithm is coordination-free, scalable, and has minimal communication cost for all participants involved. In doing so, the delayed-broadcast algorithm opens the door to new high-performance fault-tolerant and federated data management systems. To illustrate this, we show that the delayed-replication algorithm is not only useful to support specialized learners, but can also be used to reduce the overall communication cost of permissioned blockchains and to improve their storage scalability

    Icarus lander

    Get PDF
    Icarus is one of the earth-crossing asteroids. It has a semi-major axis of 1.078 AU, giving it a period of 1.12 years, and an eccentricity of 0.827. The perihelion distance is thus 0.187 AU. The inclination of Icarus's orbit is 23 deg. Although it is a small body, it is still massive enough to be essentially immune to non-gravitational forces. These orbital and physical qualities make it an attractive target for testing General Relativity. The close passage to the sun means that it will be subject to a large relativistic perihelion precession; the high eccentricity makes the precession easy to measure; the high inclination allows the solar quadrupole moment (J sub 2) to be simultaneously determined via the nodal precession it predicts. The degeneracy between the relativistic effect and the effect of J sub 2 in the perihelion precession may thus be broken. Results are presented from a preliminary study of a possible trajectory design for an Icarus lander and from a covariance study of the scientific return to be expected from such a mission

    Brief Announcement: Revisiting Consensus Protocols through Wait-Free Parallelization

    Get PDF
    In this brief announcement, we propose a protocol-agnostic approach to improve the design of primary-backup consensus protocols. At the core of our approach is a novel wait-free design of running several instances of the underlying consensus protocol in parallel. To yield a high-performance parallelized design, we present coordination-free techniques to order operations across parallel instances, deal with instance failures, and assign clients to specific instances. Consequently, the design we present is able to reduce the load on individual instances and primaries, while also reducing the adverse effects of any malicious replicas. Our design is fine-tuned such that the instances coordinated by non-faulty replicas are wait-free: they can continuously make consensus decisions, independent of the behavior of any other instances

    The Effects of Orbital Motion on LISA Time Delay Interferometry

    Full text link
    In an effort to eliminate laser phase noise in laser interferometer spaceborne gravitational wave detectors, several combinations of signals have been found that allow the laser noise to be canceled out while gravitational wave signals remain. This process is called time delay interferometry (TDI). In the papers that defined the TDI variables, their performance was evaluated in the limit that the gravitational wave detector is fixed in space. However, the performance depends on certain symmetries in the armlengths that are available if the detector is fixed in space, but that will be broken in the actual rotating and flexing configuration produced by the LISA orbits. In this paper we investigate the performance of these TDI variables for the real LISA orbits. First, addressing the effects of rotation, we verify Daniel Shaddock's result that the Sagnac variables will not cancel out the laser phase noise, and we also find the same result for the symmetric Sagnac variable. The loss of the latter variable would be particularly unfortunate since this variable also cancels out gravitational wave signal, allowing instrument noise in the detector to be isolated and measured. Fortunately, we have found a set of more complicated TDI variables, which we call Delta-Sagnac variables, one of which accomplishes the same goal as the symmetric Sagnac variable to good accuracy. Finally, however, as we investigate the effects of the flexing of the detector arms due to non-circular orbital motion, we show that all variables, including the interferometer variables, which survive the rotation-induced loss of direction symmetry, will not completely cancel laser phase noise when the armlengths are changing with time. This unavoidable problem will place a stringent requirement on laser stability of 5 Hz per root Hz.Comment: 12 pages, 2 figure
    • …
    corecore