808 research outputs found

    Ferroelectricity in strained Ca0.5_{0.5}Sr0.5_{0.5}TiO3_3 from first principles

    Full text link
    We present a density functional theory investigation of strained Ca0.5_{0.5}Sr0.5_{0.5}TiO3_3. We have determined the structure and polarization for a number of arrangements of Ca and Sr in a 2×\times2×\times2 supercell. The a and b lattice vectors are strained to match the lattice constants of the rotated Si(001) face. To set the context for the CSTO study, we also include simulations of the Si(001) constrained structures for CaTiO3_3 and SrTiO3_3. Our primary findings are that all Ca0.5_{0.5}Sr0.5_{0.5}TiO3_3 structures examined except one are ferroelectric, exhibiting polarizations ranging from 0.08 C/m2^2 for the lowest energy configuration to about 0.26 C/m2^2 for the higher energy configurations. We find that the configurations with larger polarizations have lower c/a ratios. The net polarization of the cell is the result of Ti-O ferroelectric displacements regulated by A-site cations.Comment: 13 pages, 4 figure

    Hole-pair hopping in arrangements of hole-rich/hole-poor domains in a quantum antiferromagnet

    Full text link
    We study the motion of holes in a doped quantum antiferromagnet in the presence of arrangements of hole-rich and hole-poor domains such as the stripe-phase in high-TCT_C cuprates. When these structures form, it becomes energetically favorable for single holes, pairs of holes or small bound-hole clusters to hop from one hole-rich domain to another due to quantum fluctuations. However, we find that at temperature of approximately 100 K, the probability for bound hole-pair exchange between neighboring hole-rich regions in the stripe phase, is one or two orders of magnitude larger than single-hole or multi-hole droplet exchange. As a result holes in a given hole-rich domain penetrate further into the antiferromagnetically aligned domains when they do it in pairs. At temperature of about 100 K and below bound pairs of holes hop from one hole-rich domain to another with high probability. Therefore our main finding is that the presence of the antiferromagnetic hole-poor domains act as a filter which selects, from the hole-rich domains (where holes form a self-bound liquid), hole pairs which can be exchanged throughout the system. This fluid of bound hole pairs can undergo a superfluid phase ordering at the above mentioned temperature scale.Comment: Revtex, 6 two-column pages, 4 figure

    Charge Stripe in an Antiferromagnet: 1d Band of Composite Excitations

    Full text link
    With the help of analytical and numerical studies of the tt-JzJ_z model we argue that the charge stripe in an antiferromagnetic insulator should be understood as a system of holon-spin-polaron excitations condensed at the self-induced antiphase domain wall. The structure of such a charge excitation is studied in detail with numerical and analytical results for various quantities being in a very close agreement. An analytical picture of these excitations occupying an effective 1D stripe band is also in a very good accord with numerical data. The emerging concept advocates the primary role of the kinetic energy in favoring the stripe as a ground state. A comparative analysis suggests the effect of pairing and collective meandering on the energetics of the stripe formation to be secondary.Comment: 5 pages, 3 figures, proceedings of SCES'01 conference, Ann Arbor, 2001, to be published in Physica

    Luttinger Liquid Instability in the One Dimensional t-J Model

    Full text link
    We study the t-J model in one dimension by numerically projecting the true ground state from a Luttinger liquid trial wave function. We find the model exhibits Luttinger liquid behavior for most of the phase diagram in which interaction strength and density are varied. However at small densities and high interaction strengths a new phase with a gap to spin excitations and enhanced superconducting correlations is found. We show this phase is a Luther-Emery liquid and study its correlation functions.Comment: REVTEX, 11 pages. 4 Figures available on request from [email protected]

    Stringent limitations on reductive perturbation studies of nonplanar acoustic solitons in plasmas

    Get PDF
    More than fifty years ago, the Korteweg-de Vries equation was shown to describe not only solitary surface waves on shallow water, but also nonlinear ion-acoustic waves. Because of the algorithmic ease of using reductive perturbation theory, intensive research followed on a wide range of wave types. Soon, the formalism was extended to nonplanar modes by introducing a stretching designed to accommodate spherically and cylindrically symmetric ion-acoustic waves. Over the last two decades many authors followed this approach, but almost all have ignored the severe restrictions in parameter space imposed by the Ansatz. In addition, for other steps in the formalism, the justification is often not spelled out, leading to effects that are physically undesirable or ambiguous. Hence, there is a need to critically assess this approach to nonplanar modes and to use it with the utmost care, respecting the restrictions on its validity. Only inward propagation may be meaningfully studied and respect for weak nonlinearities of at most 1/10 implies that one cannot get closer to the axis or centre of symmetry than about 30 Debye lengths. Thus, one is in a regime where the modes are quasi-planar and not particularly interesting. Most papers disregard these constraints and hence reach questionable conclusions

    Comment on ``Stripes and the t-J Model''

    Full text link
    This is a comment being submitted to Physical Review Letters on a recent letter by Hellberg and Manousakis on stripes in the t-J model.Comment: One reference correcte

    Matrix Element Distribution as a Signature of Entanglement Generation

    Full text link
    We explore connections between an operator's matrix element distribution and its entanglement generation. Operators with matrix element distributions similar to those of random matrices generate states of high multi-partite entanglement. This occurs even when other statistical properties of the operators do not conincide with random matrices. Similarly, operators with some statistical properties of random matrices may not exhibit random matrix element distributions and will not produce states with high levels of multi-partite entanglement. Finally, we show that operators with similar matrix element distributions generate similar amounts of entanglement.Comment: 7 pages, 6 figures, to be published PRA, partially supersedes quant-ph/0405053, expands quant-ph/050211

    Green's Function Monte Carlo for Lattice Fermions: Application to the t-J Model

    Full text link
    We develop a general numerical method to study the zero temperature properties of strongly correlated electron models on large lattices. The technique, which resembles Green's Function Monte Carlo, projects the ground state component from a trial wave function with no approximations. We use this method to determine the phase diagram of the two-dimensional t-J model, using the Maxwell construction to investigate electronic phase separation. The shell effects of fermions on finite-sized periodic lattices are minimized by keeping the number of electrons fixed at a closed-shell configuration and varying the size of the lattice. Results obtained for various electron numbers corresponding to different closed-shells indicate that the finite-size effects in our calculation are small. For any value of interaction strength, we find that there is always a value of the electron density above which the system can lower its energy by forming a two-component phase separated state. Our results are compared with other calculations on the t-J model. We find that the most accurate results are consistent with phase separation at all interaction strengths.Comment: 22 pages, 22 figure

    Variational state based on the Bethe ansatz solution and a correlated singlet liquid state in the one-dimensional t-J model

    Full text link
    The one-dimensional t-J model is investigated by the variational Monte Carlo method. A variational wave function based on the Bethe ansatz solution is newly proposed, where the spin-charge separation is realized, and a long-range correlation factor of Jastrow-type is included. In most regions of the phase diagram, this wave function provides an excellent description of the ground-state properties characterized as a Tomonaga-Luttinger liquid; Both of the amplitude and exponent of correlation functions are correctly reproduced. For the spin-gap phase, another trial state of correlated singlet pairs with a Jastrow factor is introduced. This wave function shows generalized Luther-Emery liquid behavior, exhibiting enhanced superconducting correlations and exponential decay of the spin correlation function. Using these two variational wave functions, the whole phase diagram is determined. In addition, relations between the correlation exponent and variational parameters in the trial functions are derived.Comment: REVTeX 3.0, 27 pages. 7 figures available upon request ([email protected]). To be published in Phys. Rev. B 5
    • …
    corecore